首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RVO3 perovskites have been prepared in the widest range of R (3+) ionic size, from LaVO3 to LuVO3. Pure polycrystalline samples have been obtained by a citrate technique leading to reactive RVO4 precursors, followed by thermal treatments in a reducing H2/N2 (15/85%) flow to stabilize V(3+) cations. These oxides have been studied at room temperature by high-resolution neutron powder diffraction to follow the evolution of the crystal structures along the series. The distortion of the orthorhombic perovskite (space group Pbnm), characterized by the tilting angle of the VO6 octahedra, progressively increases from La to Lu due to simple steric factors. Additionally, all of the perovskites show a subtle distortion of the VO6 octahedra which significantly increases from La to Tb, and then slightly decreases for the last terms of the series. The stability of the crystal structure is also discussed in light of bond-valence arguments.  相似文献   

2.
The number of studies on organic–inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three‐dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.  相似文献   

3.
Mn(SeO(3)).2H(2)O (1) and Fe(2)(SeO(3))(3).3H(2)O (2) have been synthesized by slow evaporation from an aqueous solution in the case of (1) and using mild hydrothermal conditions for (2). The crystal structures of both phases have been refined by the Rietveld method. The compounds crystallize in different spatial groups, the P2(1)/n monoclinic one with parameters a=6.649(1)A, b=6.542(1)A, c=10.890(1)A and beta=103.85(1) degrees being Z=4 for (1) and the R3c trigonal space group with parameters a=9.361(1)A, c=20.276(1)A and Z=6 for (2). The crystal structure of compound (1) consists of a three-dimensional framework formed by MnO(6) octahedra and (SeO(3))(2-) oxoanions with trigonal pyramidal geometry, which gives rise to Mn(2)O(10) dimers of edge-sharing octahedra. The crystal structure of phase (2) can be described as a three-dimensional framework formed by MnO(6) octahedra and (SeO(3))(2-) oxoanions with trigonal pyramidal geometry. In this phase the octahedral entities are linked along the three crystallographic axes through the selenite anions. Diffuse reflectance spectrum and luminescent measurements for (1) indicate the existence of Mn(2+) cations in a slightly distorted octahedral environment. Diffuse reflectance spectrum and M?ssbauer spectroscopy, in the paramagnetic region, for (2) show the existence of Fe(3+) cations in slightly distorted octahedral symmetry. ESR spectra of both compounds are isotropic with a g-value of 1.99(1) and 2.00(1), respectively. Magnetic measurements of both phases indicate an antiferromagnetic behavior. For phase (2), both, the ESR and magnetic measurements suggest a spin change from Fe(3+) (S=5/2) to Fe(2+) (S=2) at low temperatures.  相似文献   

4.
Flux‐grown gadolinium aluminate perovskite, GdAlO3, was examined using single‐crystal 0.7 Å‐wavelength synchrotron X‐ray diffraction. In the context of other well categorized rare earth aluminate (RAlO3) perovskite phases, the orthorhombic Pnma symmetry determined for the current compound is unsurprising. Corner‐linked AlO6 octahedra form the structural backbone of RAlO3 perovskites and distort to accommodate the various rare earth ions in the structural voids. For GdAlO3, the octahedral distortion, characterized by tilting of the octahedra about the shortest R—Al—R vectors, and octahedral deformation, characterized by strain of the octahedra along those axes, are in accordance with trends in the RAlO3 series.  相似文献   

5.
Two series of elpasolite perovskites Ln2CoMnO6 and Ln2NiMnO6 (Ln=La, Pr, Nd, Sm, Gd) have been prepared. The electronic band gap and magnetic Curie temperature vary systematically as a function of the rare earth cation size within both series. Here we used Raman scattering spectroscopy along with the results of previous structural studies to show that there is little change in octahedral distortion but significant changes in the octahedral tilting angle upon decreasing lanthanide ionic radius. The data indicate differences in the orbital overlap and bond strengths between the two series of materials that allow us to understand variations in the magnetic and electrical properties within and between the two perovskite series.  相似文献   

6.
The insertion of large organic cations in metal halide perovskites with reduced‐dimensional (RD) crystal structures increases crystal formation energy and regulates the growth orientation of the inorganic domains. However, the power conversion performance is curtailed by the insulating nature of the bulky cations. Now a series of RD perovskites with 2‐thiophenmethylammonium (TMA) as the intercalating cation are investigated. Compared with traditional ligands, TMA demonstrates improved electron transfer in the inorganic framework. TMA modifies the near‐band‐edge integrity of the RD perovskite, improving hole transport. A power conversion efficiency of 19 % is achieved, the highest to date for TMA‐based RD perovskite photovoltaics; these TMA devices provide a 12 % relative increase in PCE compared to control RD perovskite devices that use PEA as the intercalating ligand, a result of the improved charge transfer from the inorganic layer to the organic ligands.  相似文献   

7.
Doped manganite perovskites AMnO(3) exhibit a rich variety of electronic properties, resulting from the interplay of charge (Mn(3+)/Mn(4+)), spin (Mn magnetic moment) and orbital (Mn(3+) Jahn-Teller distortion) degrees of freedom. Magnetisation measurements and ESR spectra have been used to study a series of eight AMnO(3) perovskites, in which the A cation sites are occupied by a distribution of 70% trivalent lanthanide and 30% divalent Ca, Sr or Ba ions. These all have a mean A cation radius of 1.20 Angstrom but different values of the cation size variance sigma(2). A change from orbital disorder to order (cooperative Jahn-Teller distortions) was previously found in the insulating regime at sigma(2) = approximately 0.005 Angstrom(2). This work has shown that co-existence of the orbitally ordered and disordered phases is found in sigma(2)= 0.0016-0.0040 Angstrom(2) samples, with a difference of 40 K between their Curie temperatures. This is ascribed to competition between orbital ordering and microstructural lattice strains. At larger sigma(2) > 0.005 Angstrom(2), the orbital ordering strains are dominant and only this phase is observed. This intermediate temperature phase segregation is one of many strain-driven separation phenomena in manganites.  相似文献   

8.
The structures of the doubly ordered perovskites NaCeMnWO(6) and NaPrMnWO(6), with rock salt ordering of the Mn(2+) and W(6+)B-site cations and layered ordering of the Na(+) and (Ce(3+)/Pr(3+)) A-site cations, have been studied by transmission electron microscopy, electron diffraction, neutron and synchrotron X-ray powder diffraction. Both compounds possess incommensurately modulated crystal structures. In NaCeMnWO(6) the modulation vector (with reference to the ideal ABX(3) perovskite subcell) is q ≈ 0.067a* (~58.7 ?) and in NaPrMnWO(6)q ≈ 0.046a* (~85.3 ?). In both compounds the superstructures are primarily the two-dimensional chessboard type, although some crystals of NaCeMnWO(6) were found with one-dimensional stripes. In some crystals of NaPrMnWO(6) there is a coexistence of chessboards and stripes. Modeling of neutron diffraction data shows that octahedral tilting plays an important role in the structural modulation.  相似文献   

9.
Reduction of La(1-x)Ca(x)MnO(3) (0.6 ≤ x ≤ 1) perovskite phases with sodium hydride yields materials of composition La(1-x)Ca(x)MnO(2+δ). The calcium-rich phases (x = 0.9, 1) adopt (La(0.9)Ca(0.1))(0.5)Mn(0.5)O disordered rocksalt structures. However local structure analysis using reverse Monte Carlo refinement of models against pair distribution functions obtained from neutron total scattering data reveals lanthanum-rich La(1-x)Ca(x)MnO(2+δ) (x = 0.6, 0.67, 0.7) phases adopt disordered structures consisting of an intergrowth of sheets of MnO(6) octahedra and sheets of MnO(4) tetrahedra. X-ray absorption data confirm the presence of Mn(I) centers in La(1-x)Ca(x)MnO(2+δ) phases with x < 1. Low-temperature neutron diffraction data reveal La(1-x)Ca(x)MnO(2+δ) (x = 0.6, 0.67, 0.7) phases become antiferromagnetically ordered at low temperature.  相似文献   

10.
新型有机-无机杂化二维(2D)钙钛矿具有优良的光电性能、 结晶性和稳定性, 在太阳能电池领域引起广泛关注. 相比于三维(3D)钙钛矿, 由于有机间隔阳离子(OSC)的引入形成独特的层状晶体结构赋予了材料特殊性质: (1) 多层量子阱结构促成材料各项异性的光电性质; (2) 间隔阳离子改变前驱体团簇状态, 实现溶液中高质量的结晶; (3) 间隔层的疏水性质和抑制离子迁移作用, 从本源上改善了钙钛矿的稳定性. 近年来, 针对准2D钙钛矿太阳能电池(准2D-PSCs)展开了广泛研究, 并取得了一系列重要研究成果. 本文从准2D钙钛矿材料的晶体结构与取向、 相分布、 光电性质到器件的能量转化效率与稳定性等方面, 综合评述了近年来准 2D-PSCs的最新研究进展, 总结了晶体结构-材料性质-电池性能之间的作用机制, 并进一步展望了未来研究的趋势.  相似文献   

11.
Two new manganese(II) selenite polymorphs with formula Mn(SeO3) have been synthesised using supercritical hydrothermal conditions. The crystal structure of both compounds (1) and (2) has been solved from single-crystal X-ray diffraction data. The structures consist of a three-dimensional framework formed by MnO6 octahedra and (SeO3)2- selenite anions with trigonal pyramidal geometry. Compound (1) shows chains of elongated, corner-sharing MnO6 octahedra. These chains are linked alternately by Mn2O10 dimers of edge-sharing octahedra. Conversely, compound (2) exhibits MnO6 octahedra sharing edges with three further octahedra, giving rise to a complex three-dimensional framework. The IR spectra show the characteristic bands of the selenite anion. Studies of luminescence and diffuse reflectance spectroscopy, performed at 6 K and at room temperature, respectively, have been carried out for both compounds. The Dq and Racah parameters are Dq= 830, B= 500 and C= 3790 cm(-1) for (1) and Dq= 795, B= 520 and C= 3785 cm(-1) for (2). The EPR spectra of both compounds are isotropic with a g-value of 1.99(1), which remains unchanged with variation in temperature. Magnetic measurements indicate the presence of antiferromagnetic couplings as the major interactions in both phases, but with compound (2) exhibiting at low temperature a canting of antiferromagnetically aligned spins. The estimated J-exchange parameters are J/k=-2.2 and -1.93 for (1) and (2), respectively, with J'= -0.87 and -0.55 K.  相似文献   

12.
A new magnetic oxide, CuMnVO4, was prepared, and its crystal structure was determined by single-crystal X-ray diffraction. The magnetic properties of CuMnVO4 were characterized by magnetic susceptibility and specific heat measurements, and the spin exchange interactions of CuMnVO4 were analyzed on the basis of spin-polarized electronic band structure calculations. CuMnVO4 contains MnO4 chains made up of edge-sharing MnO6 octahedra containing high-spin Mn2+ cations. Our work shows that CuMnVO4 undergoes a three-dimensional antiferromagnetic transition at approximately 20 K. Both the intrachain and interchain spin exchanges are antiferromagnetic, and the interchain spin exchange is not negligible compared to the intrachain spin exchange.  相似文献   

13.
Variations in the electronic structure and structural distortion in multiferroic DyMnO(3) were probed by synchrotron x-ray diffraction, lifetime-broadening-suppressed x-ray absorption spectroscopy (XAS), and ab initio electronic structure calculations. The refined x-ray diffraction data enabled an observation of a diminished local Jahn-Teller distortion of Mn sites within MnO(6) octahedra in DyMnO(3) on applying the hydrostatic pressure. The intensity of the white line in Mn K-edge x-ray absorption spectra of DyMnO(3) progressively increased with the increasing pressure. With the increasing hydrostatic pressure, the absorption threshold of an Mn K-edge spectra of DyMnO(3) shifted toward a greater energy, whereas the pre-edge line slightly shifted to a smaller energy. We provide the spectral evidence for the pressure-induced bandwidth broadening for manganites. The intensity enhancement of the white line in Mn K-edge spectra is attributed to a diminished Jahn-Teller distortion of MnO(6) octahedra in compressed DyMnO(3). A comparison of the pressure-dependent XAS spectra with the ab initio electronic structure calculations and full calculations of multiple scattering using the code FDMNES shows the satisfactory agreement between experimental and calculated Mn K-edge spectra.  相似文献   

14.
系统研究了xLa5/8Ca3/8MnO3:(1-x)ErMnO3(x=0、0.2、0.4、0.5、0.6、0.8、1)铁电铁磁复合材料的晶体结构和低温下的电磁输运性质.X光衍射结果表明金属铁磁相La5/8Ca3/8MnO3和绝缘铁电相ErMnO3由于晶体结构上的巨大差异几乎完全不相溶.电阻率随x的增大而降低,其导电特性可用经典的渗流理论来解释.当x〉xc时,样品电阻特性山La5/8Ca3/RMnO3主导,电阻温度曲线会出现金属绝缘体转变.磁性测试表明,由于La5/8Ca3/8MnO3的掺入,复合材料的磁性相比单相ErMnO3得到加强.从电磁性质综合分析认为这利复合材料是一种新的多铁性材料,相比单相多铁性材料ErMnO3,它具有更强的磁性和更广的使用温度范围.  相似文献   

15.
The insertion of large organic cations in metal halide perovskites with reduced-dimensional (RD) crystal structures increases crystal formation energy and regulates the growth orientation of the inorganic domains. However, the power conversion performance is curtailed by the insulating nature of the bulky cations. Now a series of RD perovskites with 2-thiophenmethylammonium (TMA) as the intercalating cation are investigated. Compared with traditional ligands, TMA demonstrates improved electron transfer in the inorganic framework. TMA modifies the near-band-edge integrity of the RD perovskite, improving hole transport. A power conversion efficiency of 19 % is achieved, the highest to date for TMA-based RD perovskite photovoltaics; these TMA devices provide a 12 % relative increase in PCE compared to control RD perovskite devices that use PEA as the intercalating ligand, a result of the improved charge transfer from the inorganic layer to the organic ligands.  相似文献   

16.
Cation ordering in ABO3 perovskites adds to their chemical variety and can lead to properties such as ferrimagnetism and magnetoresistance in Sr2FeMoO6. Through high‐pressure and high‐temperature synthesis, a new type of “double double perovskite” structure has been discovered in the family MnRMnSbO6 (R=La, Pr, Nd, Sm). This tetragonal structure has a 1:1 order of cations on both A and B sites, with A‐site Mn2+ and R3+ cations ordered in columns and Mn2+ and Sb5+ having rock salt order on the B sites. The MnRMnSbO6 double double perovskites are ferrimagnetic at low temperatures with additional spin‐reorientation transitions. The ordering direction of ferrimagnetic Mn spins in MnNdMnSbO6 changes from parallel to [001] below TC=76 K to perpendicular below the reorientation transition at 42 K at which Nd moments also order. Smaller rare earths lead to conventional monoclinic double perovskites (MnR)MnSbO6 for Eu and Gd.  相似文献   

17.
Liu S  Li D  Xie L  Cheng H  Zhao X  Su Z 《Inorganic chemistry》2006,45(20):8036-8040
Reactions of 1:13 heteropoly anions [MV13O38](7-) (M = Mn, Ni) and lanthanide cations Ln3+ (Ln = La, Ce, or Pr) produce five isomorphic compounds, which are crystallized in the triclinic crystal system, space group P1, and formulated as [Ln6(H2O)25(MV12O38)(HMV13O38)].nH2O ((1) Ln = La, M = Mn, and n approximately 31; (2) Ln = Ce, M = Mn, and n approximately 29; (3) Ln = Pr, M = Mn, and n approximately 31; (4) Ln = La, M = Ni, and n approximately 28; (5) Ln = Pr, M = Ni, and n approximately 33). These compounds are two-dimensional polymeric structures constructed by hydrated lanthanide cations and two types of heteropoly anions, [MV13O38](7-) and [MV12O38](12-). In contrast to the previous reported 1:13 heteropoly anions, all with disordered structures, [MV13O38](7-) clusters in 1-5 are non-disordered with a distinct mode. The second kind of anionic cluster [MV12O38](12-) with O(h) symmetry, which consists of 13 entire edge-sharing MO(6) (M = V, Mn or Ni) octahedra, has not been reported hitherto. The emergence of the new cluster may be correlated to the six capping lanthanide cations surrounding it with a stabilization effect. In this paper, the syntheses and structures of the five polymeric lanthanide heteropolyvanadates of manganese(IV) and nickel(IV) have been presented.  相似文献   

18.
由于具有开放骨架的金属磷酸盐在催化、吸附、主客体组装以及光学、磁学等方面的应用[1~3],因此合成具有开放骨架的金属磷酸盐一直吸引着人们的广泛关注。自从1982年美国联合碳化公司(U.C.C.)开发出系列磷酸铝分子筛AlPO4鄄n[4]以来,大量具有开放骨架的金属磷酸盐(金属=Ga,In,F  相似文献   

19.
Dimanganese-substituted gamma-Keggin heteropoly tungstates have been synthesized by reaction of the lacunary species gamma-[(SiO(4))W(10)O(32)](8)(-) with appropriate mixtures of Mn(II) and MnO(4)(-). The crystal structure of [(CH(3))(3)(C(6)H(5))N](4)[(SiO(4))W(10)Mn(III)(2)O(36)H(6)].2CH(3)CN.H(2)O (anion 1) was determined by X-ray diffraction. Crystallographic data: space group P&onemacr;, a = 12.951(3) ?, b = 14.429(3) ?, c = 20.347(4) ?, alpha = 81.95(3) degrees, beta = 88.92(3) degrees, gamma = 67.48(3) degrees, V = 3475.2(13) ?(3), and Z = 2. The final R value is 7.29% for 15861 reflections with I > 2sigma(I). The anion has the anticipated gamma-Keggin structure with virtual C(2)(v)() symmetry. The two Mn cations occupy adjacent, edge-shared octahedra with bridging hydroxo and terminal aqua ligands. Anion 1 can be oxidized and reduced to the corresponding Mn(III)Mn(IV) (2) and Mn(II)(2) (3) species respectively. The magnetic susceptibility of 1 between 2 and 300 K indicates that the Mn(III) cations are antiferromagnetically coupled, with J = -17.0 cm(-)(1) and g = 1.965. No simple magnetic behavior was observed for 2 or 3.  相似文献   

20.
The Ho0.5Sr0.5MnO3 perovskite, synthesized in air, has been studied by combining neutron powder and electron diffraction techniques. The Pnma-type structure exhibits a strong tilting of the MnO6 octahedra. This octahedra tilting and microtwinning involve a complex strained structure. No structural transition is observed down to 1.4 K, but short-range A-type antiferromagnetism running over only a few perovskite subcells is evidenced below ≈90 K. The different behavior of this perovskite compared to other Ln0.5Sr0.5MnO3 perovskites is discussed in terms of A-site cationic mismatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号