首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complexes based on different halogen-substituted nitronyl nitroxide radicals and Cu(II), Cu3(hfac)6(NIT-Ph-F)2 (1) and Cu3(hfac)6(NIT-Ph-Cl)2 (2) (hfac = hexafluoroacetylacetonate; NIT-Ph-F = 2-(4′-fluorophenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; NIT-Ph-Cl = 2-(4′-chlorphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), were synthesized and characterized structurally and magnetically. X-ray crystal structure analyses show that 1 and 2 have similar centrosymmetric five-spin structures consisting of three Cu(II) ions bridged by two nitroxide ligands. The Cu(II) is coordinated by six oxygens to form an octahedron, while the five coordination of the terminal Cu(II) ion is square pyramidal. Magnetic measurements reveal strong antiferromagnetic interactions between Cu(II) ions and radicals in 1 (J = ?38.9 cm?1) and weak antiferromagnetic interactions between Cu(II) ions and radicals in 2 (J = ?1.23 cm?1), which may be explained by the bond length of the Cu–Orad (2.468(2) Å) in 1, which is shorter than that (2.514(2) Å) in 2, and the dihedral angle (73.17(1)°) of the plane O7–O8–Cu(2)–O7A–O8A with the moiety O5–N1–C11–N2–O6 in 1 is smaller than (77.82(1)°) in 2.  相似文献   

2.
Transition Metal Chemistry - The coordination compound constructed for nitronyl nitroxide radical NIT-Ph-4-Br and CuII(hfac)2(H2O)2 building blocks...  相似文献   

3.
4.
Two new lanthanide-radical complexes [Ln(Hfac)3(NIT-4PhAllO)2](Ln(III) = Gd (I), Tb (II); Hfac = hexafluoroacetylacetonate; NIT-4PhAllO = 4′-allyloxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been prepared and characterized in structurally as well as magnetically. Single crystal X-ray diffraction analyses reveal that two complexes are isostructural with mononuclear tri-spin structure, in which the metal ions are eight-coordinated in distorted dodecahedron geometry. The nitronyl nitroxide radicals act as monodentate ligands towards Ln(Hfac)3 unit through the oxygen atom of the nitronyl nitroxide group. Magnetic studies reveal that the Gd-coordinated nitroxide interaction is ferromagnetic.  相似文献   

5.
Four lanthanide-nitronyl nitroxide radical complexes, [Ln(hfac)3(NIT-3Methien)2] (Ln = Pr (1), Tb (2), Dy (3), Ho (4); hfac = hexafluoroacetylacetonate; NIT-3Methien = 2-(3-methylthiophene)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), have been synthesized, and structurally and magnetically characterized. Single-crystal X-ray diffraction shows that 1–4 have similar mononuclear tri-spin structures in which central Ln(III) ions are eight coordinate by two NIT-3Methien radicals and three hfac coligands. The magnetic studies indicate that there are antiferromagnetic interactions between Ln(III) ions and radicals in 1, 2, and 4, while ferromagnetic interactions are present in 3. The luminescence properties of 2 and 3 were studied.  相似文献   

6.
Five novel complexes of formula [Ln(hfac)3] · BNPhOM, where Ln = Gd, Ho, Dy, Y, Er; hfac = hexfluoracetylaceto-nate; BNPhOM = 1,3-[bis-2,2'-(4,4,5,5-tetramethyl-4,5-di-hydro-1H-imidazolyl-1-oxyl-3-oxide)phenoxy] propane, have been prepared and characterized by elemental analysis, molar conductances, IK and electronic spectra. The temperature dependence of the magnetic susceptibility for Gd( III) and radical was measured (2-300 K). The observed data were successfully simulated giving the exchange integral J = 0.28 cm-1, J' = - 0.33 cm-1. These results indicate a weak ferromagnetic spin exchange interaction between Gd(III) ion and the radical and a weak antiferromagnetic spin exchange interaction between the radical and radical.  相似文献   

7.
Two novel complexes Ni(NITpPy)2[N(CN)2]2 · 2H2O (I) and Zn(NITpPy)2[N(CN)2]2 · 2H2O (II) (NITpPy = 2-(p-pyridyl)-4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide) were synthesized and characterized by infrared spectra, elemental analyses, and UV-Vis techniques. The crystal structures of both complexes have been determined by X-ray diffraction analysis. Both complexes are of centrosymmetric distorted octahedral co-ordination geometry in which metal ions are bound to two dicyanamide anions, two water molecules, and two radicals through the nitrogen atom of pyridine rings and show one-dimensional chain structure via hydrogen bonds. The magnetic properties of complexes I and II were investigated in the temperature range 5–300 K and discussed in detail. The two compounds exhibit weak intermolecular antiferromagnetic interaction. In complex II, the diamagnetic metal zinc just plays the role of a bridge. The article was submitted by the authors in English.  相似文献   

8.
Three new lanthanide compounds were obtained using 2-(3-methylthiophene)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) (NIT-3Methien). These compounds, [Gd(hfac)3(NIT-3Methien)2]?0.5CH3(CH2)5CH3 (1: Half n-heptane trihexafluoroacetylacetonate-di-2-(3-methylthiophene)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide gadolinium(III)), [Tb(hfac)3(NIT-3Methien)2]?0.5H2O (2: Half Hydrate trihexafluoroacetylacetonate-di-2-(3-methylthiophene)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide terbium(III)), and [Dy(hfac)3(NIT-3Methien)2]?0.5H2O (3: Half Hydrate trihexafluoroacetylacetonate-di-2-(3-methylthiophene)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide dysprosium(III)), (CH3(CH2)5CH3 = n-heptane), (hfac = hexafluoroacetylacetonate), were characterized structurally and magnetically. The three compounds crystallize in the triclinic space group P1( - ). Ln(III) ion was eight-coordinate by six oxygens from three hfac ligands and two oxygens from two radicals. In 1, direct current (DC) magnetic studies reveal ferromagnetic interactions between the Gd(III) ion and radicals with J1 = 0.94 cm?1. In 2 and 3, there are antiferromagnetic interactions between the Tb(III), or Dy(III) ions and radicals. The luminescence characterizations show that 2 exhibits highly selective luminescent sensing of Cr2O72? ions.  相似文献   

9.
Transition Metal Chemistry - The crystal structures and magnetic properties of three coordination compounds constructed from various nitroxide radicals L and MII(hfac)2(H2O)2 building blocks...  相似文献   

10.
Ren  Jie  Wang  BingWu  Chen  ZhiDa 《中国科学:化学(英文版)》2009,52(11):1961-1968
Science China Chemistry - The magnetic coupling interactions of the nitronyl nitroxide radicals bound to diamagnetic (YIII) and paramagnetic (GdIII) rare earth ions in two model magnetic systems...  相似文献   

11.
Two new chelating radical ligands, NITphtrz (4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl-3-oxide) and IMphtrz (4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl), and their cobalt(II) complexes [Co(Hfac)2(NITphtrz)] (I) and [Co(Hfac)2(IMphtrz)] (II) (Hfac = hexafluoroacetylacetonate) have been prepared and characterized by IR, magnetic, and single-crystal X-ray analysis. The magnetic behaviors of the lignad NITphtrz and complex I have been discussed.  相似文献   

12.
Four new metal-radical complexes - [Cu(NIT3Py)2(DTB)2] 1, [Co(NIT3Py)2(DTB)2(CH3OH)2] 2, [Cu(NIT4Py)2(DTB)2(H2O)2] 3, [Co(NIT4Py)2(DTB)2(H2O)2] 4, (NIT3Py = 2-(3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], NIT4Py = 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], DTB = 3,5-dinitrobenzoic anion) have been synthesized by using transition metal ions, nitronyl nitroxide radicals as spin carriers, and incorporating 3,5-dinitrobenzoic acid (DTB) as a coligand.  相似文献   

13.
Second-sphere coordination refers to any intermolecular interactions with the ligands directly bound to the primary coordination sphere of a metal ion. Four supramolecular complexes, 0.5[L·2H]2+·0.5[MCl4]2?·[CH3OH]·0.5[CH2Cl2] (M = Co, crystal 1; M = Mn, crystal 2), 0.5[L·2H]2+·0.5[ZnBr4]2?·[CH3OH]·0.5[CH2Cl2] (crystal 3), and 0.5[L·2H]2+·0.5[Cu2Br4]2?·H2O (crystal 4), based on naphthalene-based ligand N,N,N′,N′-tetra-p-methylnaphthyl-ethanediamine (L), have been synthesized. X-ray analysis reveals that 1–3 are isostructural, in which the methanol molecules are bridges, connecting the protonated L and metal chloride anions via N–H?O and O–H?Cl (Br) interactions to construct the host framework, and forming X-shaped cavity accessible for the inclusion of weakly polar guest molecules of dichloromethane. Dichloromethane is connected with the host framework through van der Waals forces. In 4, a dinuclear anion [Cu2Br4]2? is connected with the ligand through N–H?Br interactions, in which the water molecules are accommodated between chains formed by the ligand and [Cu2Br4]2?. Structure stability, thermal analysis, and photoluminescent properties were studied for 1–4.  相似文献   

14.
Two new paddle-wheel dimeric copper complexes, [Cu2(4-MePhCOO)4(NITmPy)2] (1) and [Cu2(3-MePhCOO)4(NITmPy)2] (2) (NITmPy?=?2-(3-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro1H-imidazolyl-1-oxyl-3-oxide), were synthesized by reaction of copper toluate and NITmPy. Single crystal X-ray analyses revealed that both complexes are symmetrical dimers. Cu with four deprotonated methyl-benzoate bridging ligands form a paddle-wheel core and pyridyl nitrogen of radical ligands at the apical position. Based on the Cu–Cu axis of 1 and 2, we exploited the steric constraints of the methyl groups and induced the paddle-wheel. Two magnetic exchange pathways with strong antiferromagnetic interaction between dimeric CuII ions and weak antiferromagnetic interaction between NITmPy ligands exist in the complexes. IR and powder X-ray diffraction of the complexes were also studied.  相似文献   

15.
A new nickel(II) complex [Ni(NIT-1′-MeBzIm)2(H2O)2] · ClO4 · H2O (NIT-1′-MeBzIm = 2-{2′-[(l′-methyl)benzimidazolyl]}-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been prepared and structurally characterized by single-crystal X-ray diffraction. Complex I crystallizes in monoclinic, space group C2/c, Z = 4. Crystal data: C30H46N8O16ClNi, Mr = 869.06, a = 13.958(3), b = 15.904(4), c = 18.514(5) Å, β = 101.047(3)°. The X-ray analysis reveals that Ni2+ ion resides in a distorted octahedron center, the complex was linked by intermolecular hydrogen bonds, resulting in a 2D network configuration. Magnetic investigation indicates the existence of interamolecular interactions is antiferromagnetic with J = ?40.76 cm?1.  相似文献   

16.
Zhou  Yong-Hong  Xu  Yun  Xue  Zu-Qian  Shi  Jun-Qing  Su  Yue  Sun  Mei-Ling  Wang  Si-Hui  Wang  Long-Long  Wang  Qing-Qing  Wei  Yuan-Jie 《Transition Metal Chemistry》2020,45(5):353-362
Transition Metal Chemistry - Four metal–organic coordination complexes, namely {[Zn(SIP)(mbi)2]·(Hmbi)·(H2O)2}n (1), {[Cd3(SIP)2(bbhb)3(H2O)4]·(H2O)2}n (2),...  相似文献   

17.
Four novel coordination polymers constructed from flexible pamoic acid, namely [Co(pam)(4,4′-bipy)]n·nH2O (1), [Ni(pam)(4,4′-bipy)(H2O)2]n·2nCH3CN (2), [Cd(pam)(py)2]n·npy (3) and [Mn2(pam)2(py)6(H2O)2]n·2npy (4), (H2pam = pamoic acid, 4,4′-bipy = 4,4′-bipyridine, py = pyridine), have been synthesized and characterized by elemental analysis, infrared spectra and X-ray crystallography. Complex 1 is a 2-D coordination polymer constructed from chelating bis-bidentate pam and 4,4′-bipyridine bridging ligands. Complex 2 is a 2-D coordination polymer assembled by bis-monodentate pam and 4,4′-bipyridine, where acetonitrile is filled in the rectangle channels. Both 2-D coordination polymers display undulated (4,4) grid layers as sql topology. Complex 3 displays a 1-D polymeric chain using chelating bis-bidentate pam as bridging ligand. Complex 4 exhibits an interesting bis-monodentate pam-Mn(II) 1-D polymeric chain, in which exist two-type six-coordinated manganese centers. Mn(1) is bound to four pyridine ligands, whereas Mn(2) is combined to two pyridine and two H2O molecules. Their thermal stabilities have been investigated. Cadmium complex 3 displays strong green luminescence with emission maximum at 543 nm.  相似文献   

18.
A new building block for molecule-based magnetic materials???thiophene-substituted nitronyl nitroxide, NIT2-thp, [1, NIT2-thp?=?4,4,5,5-tetramethyl-2-(thiophenal-2-yl)imidazoline-1-oxyl-3-oxide] and its copper(II) complex [Cu(hfac)2]3(NIT2-thp)2 (2) (hfac?=?hexafluoroacetylacetonate) have been synthesized and characterized structurally and magnetically. For 1, dimers were formed and arranged through intermolecular interactions, the shortest contact between nitroxide groups is 4.115?Å among adjacent dimers. In 2 two types of copper interaction with 1 give three colinear Cu(II) ions linked by two μ???1,4 bridging nitroxide ligands. The central metal ion is in a distorted octahedron, axially coordinated by two nitroxide oxygen atoms, while the two external metal ions are in distorted square-pyramidal environments with the nitroxide oxygen atom coordinated in the basal plane. Magnetic susceptibility data for 1 and 2 have been measured in the range 3–300?K. There are antiferromagnetic interactions (J?=??3.89?cm?1) between the dimers of 1 and also ferromagnetic interactions in 2. The magnetic properties of 1 and 2 are discussed in connection with their crystal structures.  相似文献   

19.
The magnetic coupling interactions of the nitronyl nitroxide radicals bound to diamagnetic (YIII) and paramagnetic (GdIII) rare earth ions in two model magnetic systems based on novel rare earth organic radical complexes Ln(hfac)3(NITPhOCH3)2 (Ln = YIII 1, GdIII 2; hafc = hexafluoroacetylacetonate; NITPhOCH3 = 4′-methoxyo-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been investigated by density functional theory (DFT). The magnetic coupling mechanisms were also explored from the viewpoint of molecular orbital and spin density populations. DFT calculations show that the empty 4d-orbitals of YIII and 5d-orbitals of GdIII play an important role in the antiferromagnetic coupling between the two nitronyl nitroxide radical ligands, and that the ferromagnetic coupling between the GdIII ion and the radical magnetic centers can be attributed to the nearly complete localization of the isotropic 4f-shell and singly occupied magnetic orbital (Π*) of the nitronyl nitroxide.  相似文献   

20.
This review highlights the stoichiometric functionalization of both white phosphorus and naked Pn fragments derived from the metal-mediated demolition of the P4 tetrahedron. In a first section, the alkylation of Pn ligands is discussed giving specific examples such as: (i) the electrophilic alkylation of η3-P3 or, μ,η3-P3 ligands: (ii) the transfer of a methyl group from molybdenum to η5-P5 ligands to yield a norbornadiene-like μ3411-MeP7 ligand; (iii) the formation of P-C or P-H bonds mediated by rhodium and iron complexes; (iv) the use of ammonium salts to transfer an alkyl to polyphosphido clusters. Different methods to functionalise white phosphorus or other Pn ligands, including the cyclization of acrolein with diphosphenes and the insertion of CO or carbenes across P-P, P-M bonds, and P-E bonds (E = S, Se), are illustrated in appropriate sections. Finally, the last part of the article, reports on the astounding coupling of alkynes and phosphalkynes with Pn ligands which is a versatile, not yet completely explored, method to form an unprecedented variety of carbon-phosphorus heterocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号