首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The equilibrium geometries,energies,harmonic vibrational frequencies,and nucleus independent chemical shifts(NICS) of the new type sandwich structures [As4MAs4]n-(M = Fe,Co,Ni,Ru,Rh,Pd,Os,Ir and Pt;n = 0,1 or 2) are investigated at the B3LYP level.All the [As4MAs4]n-species adopt staggered(D4d) conformations as their stable structures and eclipsed(D4h) conformations as their transition states,and once the sandwich complexes are formed,the As42- square properties remain unchanged.The NICS calculation confirms that the complexes of Fe,Co,and Ni are aromatic with negative NICS values,and those of Ru,Rh,and Ir exhibit slight aromaticity,while those of Pd,Os,and Pt show slight antiaromaticity.  相似文献   

2.
The equilibrium geometries, energies, harmonic vibrational frequencies, and nuc- leus independent chemical shifts (NICS) of the new type sandwich structures [As4MAs4]n- (M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt; n = 0, 1 or 2) are investigated at the B3LYP level.All the [As4MAs4]n- species adopt staggered (D4d) conformations as their stable structures and eclipsed (D4h) conformations as their transition states, and once the sandwich complexes are formed, the As42- square properties remain unchanged.The NICS calculation confirms that the complexes of Fe, Co, and Ni are aromatic with negative NICS values, and those of Ru, Rh, and Ir exhibit slight aromaticity, while those of Pd, Os, and Pt show slight antiaromaticity.  相似文献   

3.
The interaction of the alkali metal cations, Li+, Na+, and K+, with the amino acid proline (Pro) and its four- and six-membered ring analogues, azetidine-2-carboxylic acid (Aze) and pipecolic acid (Pip), are examined in detail. Experimentally, threshold collision-induced dissociation of the M+(L) complexes, where M = Li, Na, and K and L = Pro, Aze, and Pip, with Xe are studied using a guided ion beam tandem mass spectrometer. From analysis of the kinetic energy dependent cross sections, M(+)-L bond dissociation energies are measured. These analyses account for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Ab initio calculations for a number of geometric conformations of the M+(L) complexes were determined at the B3LYP/6-311G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. Theoretical bond energies show good agreement with the experimental bond energies, which establishes that the zwitterionic form of the alkali metal cation/amino acid, the lowest energy conformation, is formed in all cases. Despite the increased conformational mobility in the Pip systems, the Li+, Na+, and K+ complexes of Pro show higher binding energies. A meticulous examination of the zwitterionic structures of these complexes provides an explanation for the stability of the five-membered ring complexes.  相似文献   

4.
Novel cyclopentadienyl (Cp)-alkali metal complexes 1-M and 2-M (M = Li, Na, K), in which the Cp ring is annelated with two bicyclo[2.2.2]octene units and substituted with a phenyl group for 1 and a tert-butyl group for 2, were synthesized, and their structures and dynamic behaviors were investigated by means of X-ray crystallography, dynamic (13)C NMR, and DFT calculations. The X-ray crystallography results indicated that 1-Li, 1-Na, and 2-Na form monomeric contact ion pairs (CIP) with three THF molecules coordinated to the metal atom. Also, in THF-d(8), all of the 1-M and 2-M form monomeric CIP in the ground state. However, variable-temperature (13)C NMR measurements of 1-M and 2-M in THF-d(8) demonstrated dynamic behavior in which the metal ion exchanges positions between the upper and lower faces of the Cp ring. From a study of the concentration dependence of the dynamic behavior, the exchange was found to proceed principally as an intramolecular process at concentration ranges lower than 0.2 M. The experimentally observed deltaG values for the intramolecular exchange process for all the 1-M and 2-M (except for 2-Li, whose intramolecular process was too slow to observe) were found to be quite similar in THF-d(8) solution and to fall within the range of 12-14 kcal mol(-)(1). Within this range, a tendency was observed for the deltaG values to increase as the size of the metal decreased. Theoretical calculations (B3LYP/6-31G(d)) afforded considerably large values as the gas-phase dissociation energy for 1-M (162.7 kcal mol(-)(1) for M = Li; 131.6 kcal mol(-)(1) for M = Na; 110.9 kcal mol(-)(1) for M = K) and for 2-M (170.0 kcal mol(-)(1) for M = Li; 137.5 kcal mol(-)(1) for M = Na; 115.4 kcal mol(-)(1) for M = K). These values should be compensated for by a decrease in the solvation energies for the metal ions with increasing size, as exemplified by the calculated solvation energy for M(+)(Me(2)O)(4), which serves as a model for metal ions solvated with four molecules of THF (-122.9 kcal mol(-)(1) for M = Li; -94.7 kcal mol(-)(1) for M = Na; -67.7 kcal mol(-)(1) for M = K). This compensation results in a small difference in the overall energy for dissociation of 1-M or 2-M in ethereal solutions, thus supporting the similar deltaG values observed for the intramolecular metal exchange.  相似文献   

5.
The reactions of a variety of divalent transition metal ions with 3-methyl-5-(2-hydroxypheny)-, 3-methyl-5-(2-thienyl)-and 3-methyl-5-(2-furyl)-1,3,4-thiadiazolidine-2-thiones (htt, ttt and ftt, respectively) are accompanied by opening of the thiadiazolidine ring and rearrangement to the corresponding Schiff base (Hhts, Htts and Hfts, respectively) with the concomitant formation of complexes of the general formulae, [M(hts)] (M=Ni, Cu, Zn or Pd), [M(hts) (py)] (M=Ni, Cu), [Co(Hhts)hts)], and [ML2] (M=Ni, Cu, Zn or Cd); L=tts or fts). The complexes have been characterised by physico-chemical and spectroscopic methods. The fungitoxicities of the corresponding Schiff base metal complexes have been investigated. TMC 2568  相似文献   

6.
Binuclear Cp(2)M(2)(μ-C(8)H(8)) derivatives have been synthesized for M = V, Cr, Co, and Ni and have now been studied theoretically for the entire first row of transition metals from Ti to Ni. The early transition metal derivatives Cp(2)M(2)(μ-C(8)H(8)) (M = Ti, V, Cr. Mn) are predicted to form low-energy cis-Cp(2)M(2)(μ-C(8)H(8)) structures with a folded C(8)H(8) ring (dihedral angle ~130°) and short metal-metal distances suggesting multiple bonding. These predicted structures are close to the experimental structures for M = V, Cr with V≡V and Cr≡Cr bond lengths of ~2.48 and ~2.36 ?, respectively. The middle to late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Mn, Fe, Co, Ni) with a twisted μ-C(8)H(8) ring and no metal-metal bonding. The hapticity of the central μ-C(8)H(8) ring in such structures ranges from five for Mn and Fe to four for Co and three for Ni and thus depend on the electronic requirements of the central metal atom. This leads to the favored 18-electron configuration for both metal atoms in the singlet Fe, Co, and Ni structures but only 17-electron metal configurations in the triplet Mn structure. In addition, the late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Fe, Co, Ni), with the tub conformation of the μ-C(8)H(8) ring functioning as a tetrahapto (M = Fe, Co) or trihapto (M = Ni) ligand to each CpM group. A μ-C(8)H(8) ring in the tub conformation also bonds to two CpFe units as a bis(tetrahapto) ligand in both singlet and triplet cis-Cp(2)Fe(2)(μ-C(8)H(8)) structures.  相似文献   

7.
The structures and properties of transition metal oxide (TMO) clusters of the group VIB metals, (MO(3))(n) (M = Cr, Mo, W; n = 1-6), have been studied with density functional theory (DFT) methods. Geometry optimizations and frequency calculations were carried out at the local and nonlocal DFT levels with polarized valence double-zeta quality basis sets, and final energies were calculated at nonlocal DFT levels with polarized valence triple-zeta quality basis sets at the local and nonlocal DFT geometries. Effective core potentials were used to treat the transition metal atoms. Two types of clusters were investigated, the ring and the chain, with the ring being lower in energy. Large ring structures (n > 3) were shown to be fluxional in their out of plane deformations. Long chain structures (n > 3) of (CrO(3))(n) were predicted to be weakly bound complexes of the smaller clusters at the nonlocal DFT levels. For M(6)O(18), two additional isomers were also studied, the cage and the inverted cage. The relative stability of the different conformations of M(6)O(18) depends on the transition metal as well as the level of theory. Normalized and differential clustering energies of the ring structures were calculated and were shown to vary with respect to the cluster size. Br?nsted basicities and Lewis acidities based on a fluoride affinity scale were also calculated. The Br?nsted basicities as well as the Lewis acidities depend on the size of the cluster and the site to which the proton or the fluoride anion binds. These clusters are fairly weak Br?nsted bases with gas phase basicities comparable to those of H(2)O and NH(3). The clusters are, however, very strong Lewis acids and many of them are stronger than strong Lewis acids such as SbF(5). Br?nsted acidities of M(6)O(19)H(2) and M(6)O(18)FH were calculated for M = Mo and W and these compounds were shown to be very strong acids in the gas phase. The acid/base properties of these TMO clusters are expected to play important roles in their catalytic activities.  相似文献   

8.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.  相似文献   

9.
Four compounds containing metal-metal quadruple bonds, the [M2(CH3)8]n- ions (M = Cr, Mo, W, Re and n = 4, 4, 4, 2, respectively), have been studied theoretically using multiconfigurational quantum-chemical methods. The molecular structure of the ground state of these compounds has been determined and the energy of the delta --> delta* transition has been calculated and compared with previous experimental measurements. The high negative charges on the Cr, Mo, and W complexes lead to difficulties in the successful modeling of the ground-state structures, a problem that has been addressed by the explicit inclusion of four Li+ ions in these calculations. The ground-state geometries of the complexes and the delta --> delta* transition have been modeled with either excellent agreement with experiment (Re) or satisfactory agreement (Cr, Mo, and W).  相似文献   

10.
A detailed understanding of the electronic structure of transition metal bis(dithiolene) complexes is important because of their interesting redox, magnetic, optical, and conducting properties and their relevance to enzymes containing molybdenum and tungsten bis(dithiolene) centers. The electronic structures of the bis(dithiolene) anions [M(mnt)(2)](n-) (M = Ni, Pd, Pt; mnt = 1,2-S(2)C(2)(CN)(2); n = 0-2) were examined by a combination of photodetachment photoelectron spectroscopy (PES) and density functional theory calculations. The combined experimental and theoretical data provide insight into the molecular orbital energy levels of [M(mnt)(2)](2-) and the ground and excited states of [M(mnt)(2)](1-) and [M(mnt)(2)]. Detachment features from ligand-based orbitals of [M(mnt)(2)](2-) occur at similar energies for each species, independent of the metal center, while those arising from metal-based orbitals occur at higher energies for the heavier congeners. Electronic excitation energies inferred for [M(mnt)(2)](1-) from the PES experiments agree well with those obtained in optical absorption experiments in solution, with the PES experiments providing additional insight into the changes in energy of these transitions as a function of metal. The singly charged anions [M(mnt)(2)](1-) were also prepared and studied independently. Electron detachment from the ground states of these doublet anions accessed the lowest singlet and triplet states of neutral [M(mnt)(2)], thereby providing a direct experimental measure of their singlet-triplet splitting.  相似文献   

11.
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.  相似文献   

12.
在合成和表征了一系列新的异核异价三核过渡金属羧酸配合物〔Fe2 Ⅲ MⅡ O (OOCC2 H5 ) 6 L3〕 (M =Co ,Ni,Mn ;L =C5 H5 N ,H2 O)的基础上 ,利用多种NMR技术并结合UV谱研究了这些配合物在不同溶剂介质和温度下的谱学特征和动力学性质。利用谱峰积分比例、线宽、相同骨架分子的配体取代和纵向弛豫时间对1 HNMR谱进行了归属。实验结果表明 :这类配合物的金属离子间通过中心氧桥存在一定的反铁磁相互作用 ,从而在整体上削弱了顺磁性的影响 ,仍能观察到NMR谱。实验还发现这些配合物在CD3CN和DMSO溶剂中的结构与晶体结构一致 ,而在水中则分解为金属离子、羧酸盐和吡啶。这些结果有助于指导类似配合物的合成  相似文献   

13.
王蕊  林海  林华宽 《物理化学学报》2006,22(11):1377-1382
合成并表征了两个长链多齿配体2,9-二-(n-2′,5′,8′-三氮杂壬烷基)-1,10-菲罗啉(L1)和2,9-二-(n-4′,7′,10′-三氮杂十一烷基)-1,10-菲罗啉(L2). 研究了该配体及其与过渡金属离子和稀土金属离子配合物的热力学性质. 配体和金属离子的配位比都是1׃1. 对两个系列配合物的规律性及其差异以及对结果的影响因素也进行了研究. 结果表明, 所研究的稀土配合物都具有能催化水解生物大分子的11-1物种. 此性质表明它们是潜在的切割DNA和磷酸二酯水解酶的良好模型物.  相似文献   

14.
Al- and Cu-imidazole are produced in laser-vaporization supersonic molecular beams and studied with pulsed field ionization-zero electron kinetic energy (ZEKE) spectroscopy and second-order M?ller-Plesset (MP2) theory. The sigma and pi structures of these complexes are predicted by MP2 calculations, but only the sigma structures are identified by the experimental measurements. For these sigma structures, adiabatic ionization energies and several vibrational frequencies are measured from the ZEKE spectra, the ground electronic states of the neutral and ionized complexes are determined by comparing the observed and calculated spectra, and the metal-ligand bond dissociation energies of the neutral states are derived by using a thermochemical relation. The measured vibrational modes include the metal-ligand stretch and bend and ligand ring distortions. The metal-ligand stretch frequencies of these transient complexes are compared with those of coordinately saturated, stable metal compounds, and the ligand-based distortion frequencies are compared with those of the free ligand. Al-imidazole has a larger bond dissociation energy than Cu-imidazole, although the opposite order was previously found for the corresponding ions. The weaker bonding of the Cu complex is attributed to the antibonding interaction and the electron repulsion between the Cu 4s and N lone-pair electrons.  相似文献   

15.
Threshold collision-induced dissociation of M(+)(adenine) with xenon is studied using guided ion beam mass spectrometry. M(+) includes all 10 first-row transition metal ions: Sc(+), Ti(+), V(+), Cr(+), Mn(+), Fe(+), Co(+), Ni(+), Cu(+), and Zn(+). For the systems involving the late metal ions, Cr(+) through Cu(+), the primary product corresponds to endothermic loss of the intact adenine molecule, whereas for Zn(+), this process occurs but to form Zn + adenine(+). For the complexes to the early metal ions, Sc(+), Ti(+), and V(+), intact ligand loss competes with endothermic elimination of purine and of HCN to form MNH(+) and M(+)(C(4)H(4)N(4)), respectively, as the primary ionic products. For Sc(+), loss of ammonia is also a prominent process at low energies. Several minor channels corresponding to formation of M(+)(C(x)H(x)N(x)), x = 1-3, are also observed for these three systems at elevated energies. The energy-dependent collision-induced dissociation cross sections for M(+)(adenine), where M(+) = V(+) through Zn(+), are modeled to yield thresholds that are directly related to 0 and 298 K bond dissociation energies for M(+)-adenine after accounting for the effects of multiple ion-molecule collisions, kinetic and internal energy distributions of the reactants, and dissociation lifetimes. The measured bond energies are compared to those previously studied for simple nitrogen donor ligands, NH(3) and pyrimidine, and to results for alkali metal cations bound to adenine. Trends in these results and theoretical calculations on Cu(+)(adenine) suggest distinct differences in the binding site propensities of adenine to the alkali vs transition metal ions, a consequence of s-dsigma hybridization on the latter.  相似文献   

16.
Cation interactions with π-systems are a problem of outstanding contemporary interest and the nature of these interactions seems to be quite different for transition and main group metal ions. In this paper, we have systematically analyzed the contrast in the bonding of Cu(+) and main group metal ions. The molecular structures and energetics of the complexes formed by various alkenes (A = C(n)H(2n), n = 2-6; C(n)H(2n- 2), n = 3-8 and C(n)H(2n + 2), n = 5-10) and metal ions (M = Li(+), Na(+), K(+), Ca(2+), Mg(2+), Cu(+) and Zn(2+)) are investigated by employing ab initio post Hartree-Fock (MP2/6-311++G**) calculations and are reported in the current study. The study, which also aims to evaluate the effect of the size of the alkyl portion attached to the π-system on the complexation energy, indicates a linear relationship between the two. The decreasing order of complexation energy with various metal ion-alkene complexes follows the order Zn(2+)-A > Mg(2+)-A > Ca(2+)-A > Cu(+)-A > Li(+)-A > Na(+)-A > K(+)-A. The increased charge transfer and the electron density at (3,-1) intermolecular bond critical point corroborates well with the size of the π-system and the complexation energy. The observed deviation from the linear dependency of the Cu(+)-A complexes is attributed to the dπ→π* back bonding interaction. An energy decomposition analysis via the reduced variational space (RVS) procedure was also carried out to analyze which component among polarization, charge transfer, coulomb and exchange repulsion contributes to the increase in the complexation energy. The RVS results suggest that the polarization component significantly contributes to the increase in the complexation energy when the alkene size increases.  相似文献   

17.
The stoichiometry and the kinetics of oxidation of the cyanide complexes M(CN)n4- (M = Fe(II), Ru(II), Os(II), Mo(IV), and W(IV)) by the peroxydisulfate ion, S2O8(2-), and by the much more strongly oxidizing fluoroxysulfate ion, SO4F-, were studied in aqueous solutions containing Li+. Reactions of S2O8(2-) with M(CN)n4- are known to be strongly catalyzed by Li+ and other alkali metal ions, and this applies also to the corresponding reactions of SO4F-. The primary reactions of S2O8(2-) and SO4F- have both been found to be one-electron processes in which the equally strong O-O and O-F bonds are broken. The primary reaction of S2O8(2-) consists of a single step yielding M(CN)n3-, SO4-, and SO42-, whereas the primary reaction of SO4F- comprises two parallel one-electron steps, one leading to M(CN)n3-, SO4-, and F- and the other yielding M(CN)n-1(2-), CN-, SO4- and F-. The relationship between the rate constants and the standard free energies of reaction for the Li+-catalyzed reactions of SO4F- and S2O8(2-) with M(CN)n(4-), and for the uncatalyzed reactions of S2O8(2-) with bipyridyl and phenanthroline complexes MLn2+ (M = Fe(II), Ru(II), and Os(II)) studied previously, suggests that the intrinsic barrier for all three sets of reactions is similar, i.e., unaffected by the Li+ catalysis, and that the electron transfer and the breakage of the O-O and O-F bonds are concerted processes.  相似文献   

18.
The metal ion complexing properties of the ligand DPP (2,9-di-(pyrid-2-yl)-1,10-phenanthroline) were studied by crystallography, fluorimetry, and UV-visible spectroscopy. Because DPP forms five-membered chelate rings, it will favor complexation with metal ions of an ionic radius close to 1.0 A. Metal ion complexation and accompanying selectivity of DPP is enhanced by the rigidity of the aromatic backbone of the ligand. Cd2+, with an ionic radius of 0.96 A, exhibits a strong CHEF (chelation enhanced fluorescence) effect with 10(-8) M DPP, and Cd2+ concentrations down to 10(-9) M can be detected. Other metal ions that cause a significant CHEF effect with DPP are Ca2+ (10(-3) M) and Na+ (1.0 M), whereas metal ions such as Zn2+, Pb2+, and Hg2+ cause no CHEF effect with DPP. The lack of a CHEF effect for Zn2+ relates to the inability of this small ion to contact all four donor atoms of DPP. The structures of [Cd(DPP)2](ClO4)2 (1), [Pb(DPP)(ClO4)2H2O] (2), and [Hg(DPP)(ClO4)2] (3) are reported. The Cd(II) in 1 is 8-coordinate with the Cd-N bonds to the outer pyridyl groups stretched by steric clashes between the o-hydrogens on these outer pyridyl groups and the central aromatic ring of the second DPP ligand. The 8-coordinate Pb(II) in 2 has two short Pb-N bonds to the two central nitrogens of DPP, with longer bonds to the outer N-donors. The coordination sphere around the Pb(II) is completed by a coordinated water molecule, and two coordinated ClO4(-) ions, with long Pb-O bonds to ClO4(-) oxygens, typical of a sterically active lone pair on Pb(II). The Hg(II) in 3 shows an 8-coordinate structure with the Hg(II) forming short Hg-N bonds to the outer pyridyl groups of DPP, whereas the other Hg-N and Hg-O bonds are rather long. The structures are discussed in terms of the fit of large metal ions to DPP with minimal steric strain. The UV-visible studies of the equilibria involving DPP and metal ions gave formation constants that show that DPP has a higher affinity for metal ions with an ionic radius close to 1.0 A, particularly Cd(II), Gd(III), and Bi(III), and low affinity for small metal ions such as Ni(II) and Zn(II). The complexes of several metal ions, such as Cd(II), Gd(III), and Pb(II), showed an equilibrium involving deprotonation of the complex at remarkably low pH values, which was attributed to deprotonation of coordinated water molecules according to: [M(DPP)(H2O)]n+ <==> [M(DPP)(OH)](n-1)+ + H+. The tendency to deprotonation of these DPP complexes at low pH is discussed in terms of the large hydrophobic surface of the coordinated DPP ligand destabilizing the hydration of coordinated water molecules and the build-up of charge on the metal ion in its DPP complex because of the inability of the coordinated DPP ligand to hydrogen bond with the solvent.  相似文献   

19.
Novel transition metal complexes with the repaglinide ligand [2-ethoxy-4-[N-[1-(2piperidinophenyl)-3-methyl-1-1butyl] aminocarbonylmethyl]benzoic acid] (HL) are prepared from chloride salts of manganese(II), iron(III), copper(II), and zinc(II) ions in water-alcoholic media. The mononuclear and non-electrolyte [M(L)2(H2O)2]?nH2O (M = Mn2+, n = 2, M = Cu2+, n = 5 and M = Zn2+, n = 1) and [M(L)2(H2O)(OH)]?H2O (M = Fe3+) complexes are obtained with the metal:ligand ratio of 1:2 and the L-deprotonated form of repaglinide. They are characterized using the elemental and molar conductance. The infrared, 1H and 13C NMR spectra show the coordination mode of the metal ions to the repaglinide ligand. Magnetic susceptibility measurements and electronic spectra confirm the octahedral geometry around the metal center. The experimental values of FT-IR, 1H, NMR, and electronic spectra are compared with theoretical data obtained by the density functional theory (DFT) using the B3LYP method with the LANL2DZ basis set. Analytical and spectral results suggest that the HL ligand is coordinated to the metal ions via two oxygen atoms of the ethoxy and carboxyl groups. The structural parameters of the optimized geometries of the ligand and the studied complexes are evaluated by theoretical calculations. The order of complexation energies for the obtained structures is as follows:
$$Fe(III) complex < Cu(II) complex < Zn(II) complex < Mn(II) complex.$$
The redox behavior of repaglinide and metal complexes are studied by cyclic voltammetry revealing irreversible redox processes. The presence of repaglinide in the complexes shifts the reduction potentials of the metal ions towards more negative values.
  相似文献   

20.
The first quantitative comparison of the thermal dissociation rate constants measured for protein-ligand complexes in their hydrated and dehydrated states is described. Rate constants, measured using surface plasmon resonance spectroscopy, are reported for the dissociation of the 1:1 complexes of bovine β-lactoglobulin (Lg) with the fatty acids (FA), palmitic acid (PA), and stearic acid (SA), in aqueous solution at pH 8 and at temperatures ranging from 5 to 45 °C. The rate constants are compared to values determined from time-resolved blackbody infrared radiative dissociation measurements for the gaseous deprotonated (Lg+FA)(n-) ions, where n = 6 and 7, at temperatures ranging from 25 to 66 °C. Notably, the hydrated (Lg+PA) complex is kinetically less stable than the corresponding gas phase (Lg+PA)(n-) ions at all temperatures investigated; the hydrated (Lg+SA) complex is kinetically less stable than the gaseous (Lg+SA)(n-) ions at temperatures <45 °C. The greater kinetic stability of the gaseous (Lg+FA)(n-) ions originates from significantly larger, by 11-12 kcal mol(-1), E(a) values. It is proposed that the differences in the dissociation E(a) values measured in solution and the gas phase reflect the differential hydration of the reactant and the dissociative transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号