首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

2.
The homoleptic aluminum thiolate complex [Al(mu-S-t-Bu)(S-t-Bu)(2)](2) was prepared by reacting AlBr(3) with NaS-t-Bu while the analogous 2-propanethiolate complex [Al(mu-S-i-Pr)(S-i-Pr)(2)](2) was synthesized by reacting AlH(3)(OEt(2)) with i-PrSH. In the solid state, the dimers have tetrahedral Al atoms and anti-Al(mu-SR)(2)Al four-member rings. The attempted synthesis of [Al(mu-S-t-Bu)(S-t-Bu)(2)](2) by reacting Al(N-i-Pr(2))(3) with t-BuSH in THF solvent yielded the thermally stable THF adduct Al(S-t-Bu)(3)(THF). The same reaction in diethyl ether solvent produced a mixture of [Al(mu-mgr;-S-t-Bu)(S-t-Bu)(2)](2) and the salt [i-Pr(2)NH(2)][Al(S-t-Bu)(4)]. In the solid-state structure of the salt, the anion [Al(S-t-Bu)(4)](-) has a distorted tetrahedral geometry. Reactions of [Al(NMe(2))(3)](2) and AlH(3)(NMe(2)Et) with the alkanethiols yielded stable amine adducts Al(SR)(3)(R'NMe(2)) (R = i-Pr or t-Bu; R' = H or Et). The ligand adducts Al(S-i-Pr)(3)(HNMe(2)) and Al(S-t-Bu)(3)(THF) have distorted trigonal pyramidal geometries in the solid state. Three of the new compounds, [Al(mu-S-i-Pr)(S-i-Pr)(2)](2) and Al(SR)(3)(HNMe(2)) (R = i-Pr or t-Bu), are viable precursor candidates for the chemical vapor deposition of aluminum sulfide films because they are thermally stable, volatile liquids at moderate temperatures.  相似文献   

3.
Reaction of yttrium and lanthanide trichlorides (Ln = La, Eu, Yb) with 1 equiv of the trisodium salt of 1,4,7-tris(dimethylsilylaniline)-1,4,7-triazacyclononane (Na(3)[(SiMe(2)NPh)(3)-tacn](THF)(2)) gives good yields of the compounds [M[(SiMe(2)NPh)(3)-tacn]] (M = Y (1), Eu (3), Yb (4)) and [La[(SiMe(2)NPh)(3)-tacn](THF)] (2). Reduction of 3 with Na/Hg followed by recrystallization in the presence of diglyme yielded crystals of [Eu[(SiMe(2)NPh)(3)-tacn]][Na(diglyme)(2)] (5). Synthesis of the uranium(III) complex [U[(SiMe(2)NPh)(3)-tacn]] (6) is achieved by reaction of 1 equiv of Na(3)[(SiMe(2)NPh)(3)-tacn](THF)(2) with uranium triiodide. The U(IV) complexes, [U[(SiMe(2)NPh)(3)-tacn]X] (X = Cl (7); I (8)), were prepared via oxidation of 6 with benzyl chloride or I(2), but salt metathesis from UCl(4) provided a higher yield route for 7. The solid-state structures of 1-7 were determined by single-crystal X-ray diffraction. The ligand [(SiMe(2)NPh)(3)-tacn] generates a trigonal prismatic coordination environment for the metal center in the neutral complexes 1, 3, 4, and 6 and the ionic 5. In 2 the six nitrogen atoms of the ligand are in a trigonal prismatic configuration with the oxygen atom of the THF capping one of the triangular faces of the trigonal prism. In 7 the coordination geometry around the uranium atom is best described as bicapped trigonal bipyramidal.  相似文献   

4.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

5.
The 6Li,15N coupling constants of lithium amide dimers and their mixed complexes with n-butyllithium, formed from five different chiral amines derived from (S)-[15N]phenylalanine, were determined in diethyl ether (Et2O), tetrahydrofuran (THF) and toluene. Results of NMR spectroscopy studies of these complexes show a clear difference in 6Li,15N coupling constants between di-, tri- and tetracoordinated lithium atoms. The lithium amide dimers with a chelating ether group exhibit 6Li,15N coupling constants of approximately 3.8 and approximately 5.5 Hz for the tetracoordinated and tricoordinated lithium atoms, respectively. The lithium amide dimers with a chelating thioether group show distinctly larger 6Li,15N coupling constants of approximately 4.4 Hz for the tetracoordinated lithium atoms, and the tricoordinated lithium atoms have smaller 6Li,15N coupling constants, approximately 4.9 Hz, than their ether analogues. In diethyl ether and tetrahydrofuran, mixed dimeric complexes between the lithium amides and n-butyllithium are formed. The tetracoordinated lithium atoms of these complexes have 6Li,15N coupling constants of approximately 4.0 Hz, and the 6Li,15N coupling constants of the tricoordinated lithium atoms differ somewhat, depending on whether the chelating group is an ether or a thioether; approximately 5.1 and approximately 4.6 Hz, respectively. In toluene, mixed trimeric complexes are formed from two lithium amide moieties and one n-butyllithium. In these trimers, two lithium atoms are tricoordinated with 6Li,15N coupling constants of approximately 4.6 Hz and one lithium is dicoordinated with 6Li,15N coupling constants of approximately 6.5 Hz.  相似文献   

6.
Five-coordinate and six-coordinate 2-methyl-2-propanethiolato complexes of zirconium, [Li(DME)(3)][Zr(SCMe(3))(5)] (1) and [(THF)Li](2)Zr(SCMe(3))(6) (2), were obtained from the ZrCl(4)/LiSCMe(3) reaction system. The control of the Zr coordination number, by the ether ligands, THF or DME, bound to Li, is demonstrated by the conversion of 2 into 1 upon dissolution in DME. 1 and 2 were crystallographically characterized. The structures are extensively disordered. Crystal data follow: 1, hexagonal P6(3)/m, a = b = 12.496(3) ?, c = 17.561(9) ?, Z = 2, V = 2375(1) ?(3), R = 5.0%, R(w) = 6.8%; 2, trigonal R32, a = b = 11.813(3) ?, c = 28.37(1) ?, Z = 3, V = 3428(1) ?(3), R = 5.2%, R(w) = 6.4%.  相似文献   

7.
Cp3Tm和HSBT(HSBT =2 巯基苯并噻唑 )在THF中反应 ,生成Cp2 Tm (SBT) (THF)(TmS2 NOC2 1 H2 2 Mr=537.47) ,该晶体为正交晶系 ,空间点群为P2 1 2 1 2 1 ,晶胞参数a =1 4 734(7) ,b=1 0 .680 (1 ) ,c =1 2 .82 0 (4) ,V =2 0 1 7(3) 3,Z =4,Dc=1 .77g/cm3,F(0 0 0 ) =1 0 56,μ(MoKα) =46.53cm- 1 ,独立反射点数为 2 2 77,其中I >3σ(I)的可观测点为 1 854个 ,最终偏离因子R =0 .0 50 ,Rw=0 .0 67。晶体结构显示 ,该化合物为单体结构 ,中心铥原子分别与两个茂基、苯并噻唑 2 烃硫基上的硫原子和氮原子以及一个四氢呋喃分子配位 ,形成一个变形的三角双锥构型。  相似文献   

8.
New solvent-separated ion-pair compounds and extended structures containing ytterbium(II)-transition metal isocarbonyl linkages were synthesized. [Yb(THF)6][M(CO)5]2 (1, M = Mn; 2, M = Re) were prepared via transmetalation reactions between Yb metal and Hg[M(CO)5]2 in THF. Reflux of 1 in Et2O afforded {Yb(THF)2(Et2O)2[(mu-CO)2Mn(CO)3]2}infinity (3) which is a sheet-layer structure. In ether solution, 3 is converted to {Yb(THF)4[(mu-CO)2Mn(CO)3]2}infinity (4) which has a linear structure. In both 3 and 4, ytterbium is 8-coordinated (distorted square antiprism geometry), four coordination sites occupied by molecules of solvent and four more by oxygen atoms of isocarbonyl linkages. The [Mn(CO)5]- anion has trigonal bipyramidal geometry and is linked to ytterbium through two equatorial carbonyls. The formation of two minor products, (THF)2Mn3(CO)10 (5) and [(THF)5Yb(mu-CO)Mn3(CO)13][Mn3(CO)14] (6), was observed during condensation of 1 into 3 and 4.  相似文献   

9.
Reaction of UCl4 with 3 or 4 mol equiv of Na2dddt (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) in THF afforded the first example of a tetrakis(dithiolene) metal compound, [Na4(THF)8U(dddt)4](infinity) (1). The red crystals of 1 are composed of infinite zigzag chains in which Na2(micro-THF)3 fragments ensure the linking of Na2(THF)5U(dddt)4 moieties; the uranium atom is in a dodecahedral environment of eight sulfur atoms. Treatment of UCl4 with 3 mol equiv of Na2dddt in pyridine gave a mixture of tris- and tetrakis(dithiolene) compounds. After addition of 18c6 (18-crown-6), only the tris(dithiolene) complex was obtained and crystallized as orange crystals of [Na(18c6)(py)2]2[U(dddt)3].2py (2.2py) in which the isolated [U(dddt)3]2- anion adopts a slightly distorted trigonal prismatic configuration. A few red crystals of the unsolvated complex 2 and the trinuclear anionic compound [Na(18c6)(py)2]3[Na{U(dddt)3}2] (3) were also obtained along with orange crystals of 2.2py. All the tris(dithiolene) compounds exhibit large folding of the dddt ligand and significant interaction between the C=C double bond and the metal center.  相似文献   

10.
Liang LC  Lee WY  Hung CH 《Inorganic chemistry》2003,42(18):5471-5473
The first examples of amido phosphine complexes of zinc have been prepared. Addition of N-(2-diphenylphosphinophenyl)-2,6-diisopropylaniline (H[NP]) to ZnMe(2) or ZnEt(2) in diethyl ether at -35 degrees C generated the monomeric, three-coordinate [NP]ZnR (R = Me, Et), while the metathesis reaction of ZnCl(2) with [NP]Li(THF)(2) in diethyl ether at -35 degrees C produced homoleptic [NP](2)Zn.  相似文献   

11.
Lee WY  Liang LC 《Inorganic chemistry》2008,47(8):3298-3306
Deprotonation of N-(2-fluorophenyl)-2,6-diisopropylaniline (H[ (i) PrAr-NF]) with 1 equiv of n-BuLi in toluene at -35 degrees C produced cleanly [ (i) PrAr-NF]Li. Subsequent recrystallization of [ (i) PrAr-NF]Li in diethyl ether generated the bis(ether) adduct [ (i) PrAr-NF]Li(OEt 2) 2. An X-ray study of [ (i) PrAr-NF]Li(OEt 2) 2 showed it to be a four-coordinate species with the coordination of the fluorine atom to the lithium center. The reactions of [ (i) PrAr-NF]Li with MCl 4(THF) 2 (M = Zr, Hf), regardless of the stoichiometry employed, afforded the corresponding dichloride complexes [ (i) PrAr-NF] 2MCl 2 (M = Zr, Hf). Alkylation of [ (i) PrAr-NF] 2MCl 2 with a variety of Grignard reagents generated [ (i) PrAr-NF] 2MR 2 (M = Zr, Hf; R = Me, i-Bu, CH 2Ph). The X-ray structures of [ (i) PrAr-NF] 2ZrCl 2, [ (i) PrAr-NF] 2HfCl 2, [ (i) PrAr-NF] 2ZrMe 2, [ (i) PrAr-NF] 2Zr( i-Bu) 2, and [ (i) PrAr-NF] 2Hf(CH 2Ph) 2 are all indicative of the coordination of the fluorine atoms to these group 4 metals, leading to a C 2-symmetric, distorted octahedral geometry for these molecules.  相似文献   

12.
Treatment of [CrCl3(THF)3] with slightly more than 1 equiv of Li3(N3N) [(N3N)(3-) = ((Me3SiNCH2CH2)3N)(3-)] affords the triamidoamine complex [Cr(N3N)] (1) in 75% yield. 1 is oxidized by PhICl2, CuCl2, or AgCl to give the chromium(IV) complex [Cr(N3N)Cl] (2) in moderate yields. Alternatively, complex 2 is obtained directly from [CrCl3(THF)3] in 50% yield after treatment with 0.5 equiv of Li3(N3N). Both compounds are high-spin complexes bearing three and two unpaired electrons, respectively. Their molecular structures are described revealing a trigonal monopyramidal and trigonal bipyramidal coordination geometry of the chromium center, respectively.  相似文献   

13.
The synthesis of the following crystalline complexes is described: [Li(L)(thf)2] (), [Li(L)(tmeda)] (), [MCl2(L)] [M=Al (), Ga ()], [In(Cl)(L)(micro-Cl)2Li(OEt2)2] (), [In(Cl)(L){N(H)C6H3Pri(2)-2,6}] (), [In(L){N(H)C6H3Pri(2)-2,6}2] (), [{In(Cl)(L)(micro-OH)}2] (), [L(Cl)In-In(Cl)(L)] () (the thf-solvate, the solvate-free and the hexane-solvate), [{In(Cl)L}2(micro-S)] () and [InCl2(L)(tmeda)] () ([L]-=[{N(C6H3Pri(2)-2,6)C(H)}2CPh]-). From H(L) (), via Li(L) in Et2O, and thf, tmeda, AlCl3, GaCl3 or InCl3 there was obtained , , , or , respectively in excellent yield. Compound was the precursor for each of , and [{InCl3(tmeda)2{micro-(OSnMe2)2}}] () by treatment with one () or two () equivalents of K[N(H)(C6H3Pri(2)-2,6)], successively Li[N(SiMe3)(C6H3Pri(2)-2,6)] and moist air (), Na in thf (), tmeda (), or successively tmeda and Me3SnSnMe3 (). Crystals of (with an equivalent of In) and were obtained from InCl or thermolysis of [In(Cl)(L){N(SiMe3)(C6H3Pri(2)-2,6)}] () {prepared in situ from and Li[N(SiMe3)(C6H3Pri(2)-2,6)] in Et2O}, respectively. Compound was obtained from a thf solution of and sulfur. X-Ray data for crystalline , , , , , and are presented. The M(L) moiety in each (not the L-free ) has the monoanionic L ligated to the metal in the N,N'-chelating mode. The MN1C1C2C3N2 six-membered M(L) ring is pi-delocalised and has the half-chair (, and ) or boat (, and ) conformation.  相似文献   

14.
Treatment of the secondary phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) with BH(3)·SMe(2) gives the corresponding phosphine-borane {(Me(3)Si)(2)CH}PH(BH(3))(C(6)H(4)-2-SMe) (9) as a colourless solid. Deprotonation of 9 with n-BuLi, PhCH(2)Na or PhCH(2)K proceeds cleanly to give the corresponding alkali metal complexes [[{(Me(3)Si)(2)CH}P(BH(3))(C(6)H(4)-2-SMe)]ML](n) [ML = Li(THF), n = 2 (10); ML = Na(tmeda), n = ∞ (11); ML = K(pmdeta), n = 2 (12)] as yellow/orange crystalline solids. X-ray crystallography reveals that the phosphido-borane ligands bind the metal centres through their sulfur and phosphorus atoms and through the hydrogen atoms of the BH(3) group in each case, leading to dimeric or polymeric structures. Compounds 10-12 are stable towards both heat and ambient light; however, on heating in toluene solution in the presence of 10, traces of free phosphine-borane 9 are slowly converted to the free phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) (5) with concomitant formation of the corresponding phosphido-bis(borane) complex [{(Me(3)Si)(2)CH}P(BH(3))(2)(C(6)H(4)-2-SMe)]Li (14).  相似文献   

15.
From Li+ well-solvating solvents or complex ligands such as THF, [12]crown-4, amines etc., lithium cuprates R2CuLi(*LiX) crystallise in a solvent-separated ion pair (SSIP) structural type (e.g. 10). In contrast, solvents with little donor qualities for Li+ such as diethyl ether or dimethyl sulfide lead to solid-state structures of the contact ion pair (CIP) type (e.g. 11). 1H,6Li HOESY NMR investigations in solutions of R2CuLi(*LiX) (15, 16) are in agreement with these findings: in THF the SSIP 18 is strongly favoured in the equilibrium with the CIP 17, and in diethyl ether one observes essentially only the CIP 17. Salts LiX (X=CN, Cl, Br, I, SPh) have only a minor effect on the ion pair equilibrium. These structural investigations correspond perfectly with Bertz's logarithmic reactivity profiles (LRPs) of reactions of R2CuLi with enones in diethyl ether and THF: the faster reaction in diethyl ether is due to the predominance of the CIP 17 in this solvent, which is the reacting species; in THF only little CIP 17 is present in a fast equilibrium with the SSIP 18. A kinetic analysis of the LRPs quantifies these findings. Recent quantum-chemical studies are also in agreement with the CIP 17 being the reacting species. Thus a uniform picture of structure and reactivity of lithium cuprates emerges.  相似文献   

16.
The lithiation of N,N'-bis(trimethylsilyl)ethylenediamine, 1, by 2 equiv of methyllithium in diethyl ether yields the dimeric diethyl ether adduct [{Li[N(SiMe(3))CH(2)CH(2)NSiMe(3)]Li.OEt(2)}(2)], 2. Recrystallization of 2 from benzene gives quantitatively the unsolvated trimer [{Li[N(SiMe(3))CH(2)CH(2)NSiMe(3)]Li}(3)], 3. The solution dynamics of 2 and 3 in toluene have been investigated using variable temperature multinuclear NMR spectroscopy. In solution, 2 is undergoing a rapid exchange process involving an equilibrium between unsolvated and diethyl ether solvated dimers, whereas compound 3 exists in a temperature dependent equilibrium of dimeric and trimeric species, of which the trimer is fluxional and exchanges inequivalent ligands by an intramolecular distortion of the Li(6)N(6) cage structure. Crystals of 2 are monoclinic, of space group P2(1)/n (No. 14), with a = 10.692(9) ?, b = 16.192(2) ?, c = 24.04(4) ?, beta = 101.16(5) degrees, V = 4083(8) ?(3), and Z = 4. Crystals of 3 are trigonal, of space group R&thremacr;m(No. 166), a = 17.765(1) ?, c = 13.394(1) ?, V = 3660.5(5) ?(3), Z = 3.  相似文献   

17.
The reaction between {(Me3Si)2CH}PCl2 and one equivalent of [C10H6-8-NMe2]Li, followed by in situ reduction with LiAlH4, gives the secondary phosphane {(Me3Si)2CH}(C10H6-8-NMe2)PH(1) in good yield as a colourless crystalline solid. Metalation of 1 with Bu(n)Li in diethyl ether gives the lithium phosphanide [{[{(Me3Si)2CH}(C10H6-8-NMe2)P]Li}2(OEt2)](2), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me3Si)2CH}(C10H6-8-NMe2)P]-Na(tmeda)](3) and [[{(Me3Si)2CH}(C10H6-8-NMe2)P]K(pmdeta)](4), after recrystallisation in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N",N"-pentamethyldiethylenetriamine]. Compounds 2-4 have been characterised by 1H, 13C{1H} and 31P{1H} NMR spectroscopy, elemental analyses and X-ray crystallography. Dinuclear 2 crystallises with the phosphanide ligands arranged in a head-to-head fashion and is subject to dynamic exchange in toluene solution; in contrast, compounds 3 and 4 crystallise as discrete monomers which exhibit no dynamic behaviour in solution. DFT calculations on the model compound [{[(Me)(C10H6-8-NMe2)P]Li},(OMe2)] (2a) indicate that the most stable head-to-head form is favoured by 15.0 kcal mol(-1) over the corresponding head-to-tail form.  相似文献   

18.
Chien PS  Liang LC 《Inorganic chemistry》2005,44(14):5147-5151
The first examples of mononuclear, structurally characterized triarylphosphine complexes of zirconium and hafnium are reported. The metathetical reactions of MCl4(THF)2 (M = Zr, Hf) with [iPrNP]Li(THF)2 ([iPrNP]- = N-(2-(diphenylphosphino)phenyl)-2,6-diisopropylanilide) or [MeNP]Li(THF)2 ([MeNP]- = N-(2-(diphenylphosphino)phenyl)-2,6-dimethylanilide) in toluene at -35 degrees C produced the corresponding [iPrNP]MCl3(THF) and [MeNP]2MCl2, respectively, in high yield. In contrast, attempts to prepare [MeNP]MCl3(THF) and [iPrNP]2MCl2 led to the concomitant formation of mono- and bis-ligated complexes, from which purification proved rather ineffective. The solution and solid-state structures of [iPrNP]MCl3(THF) and [MeNP]2MCl2 were studied by multinuclear NMR spectroscopy and X-ray crystallography. The geometry of these six-coordinate complexes is best described as a distorted octahedron in which the chloride ligands in [iPrNP]MCl3(THF) adopt a virtually meridional coordination mode whereas those in [MeNP]2MCl2 are trans to each other.  相似文献   

19.
X-Ray Structure of [Li(tmeda)2][Zn(2,4,6- i Pr3C6H2)3] A side reaction of zinc halide containing VCl2(tmeda)2 and Li(2,4,6-iPr3C6H2) formed [Li(tmeda)2][Zn(2,4,6-iPr3C6H2)3] · 0,5[(tmeda)Li(μ-Cl)]2. The crystal structure (orthorhombic, Pbca, a = 26,226(2), b = 19,739(2), c = 27,223(5) Å, Z = 8, R = 0,062, wR2 = 0,154) contains trigonal planar zinc anions with Zn–C distances of 2,039(7) Å (average) and a propeller like arrangement of the aryl rings.  相似文献   

20.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号