首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The oxidation of hydrogen bromide and alkali metal bromide salts to bromine in acetic acid by cobalt(III) acetate has been studied. The oxidation is inhibited by Mn(OAc)(2) and Co(OAc)(2), which lower the bromide concentration through complexation. Stability constants for Co(II)Br(n)() were redetermined in acetic acid containing 0.1% water as a function of temperature. This amount of water lowers the stability constant values as compared to glacial acetic acid. Mn(II)Br(n)() complexes were identified by UV-visible spectroscopy, and the stability constants for Mn(II)Br(n)() were determined by electrochemical methods. The kinetics of HBr oxidation shows that there is a new pathway in the presence of M(II)Br(n)(). Analysis of the concentration dependences shows that CoBr(2) and MnBr(2) are the principal and perhaps sole forms of the divalent metals that react with Co(III) and Mn(III). The interpretation of these data is in terms of this step (M, N = Mn or Co): M(OAc)(3) + N(II)Br(2) + HOAc --> M(OAc)(2) + N(III)Br(2)OAc. The second-order rate constants (L mol(-)(1) s(-)(1)) for different M, N pairs in glacial acetic acid are 4.8 (Co, Co at 40 degrees C), 0.96 (Mn, Co at 20 degrees C), 0.15 (Mn(III).Co(II), Co at 20 degrees C), and 0.07 (Mn, Mn at 20 degrees C). Following that, reductive elimination of the dibromide radical is proposed to occur: N(III)Br(2)OAc + HOAc --> N(OAc)(2) + HBr(2)(*). This finding implicates the dibromide radical as a key intermediate in this chemistry, and indeed in the cobalt-bromide catalyzed autoxidation of methylarenes, for which some form of zerovalent bromine has been identified. The selectivity for CoBr(2) and MnBr(2) is consistent with a pathway that forms this radical rather than bromine atoms which are at a considerably higher Gibbs energy. Mn(OAc)(3) oxidizes PhCH(2)Br, k = 1.3 L mol(-)(1) s(-)(1) at 50.0 degrees C in HOAc.  相似文献   

2.
A capillary electrophoretic (CE) method for the speciation of Co(II), Co(III), and Cu(II) in electroless copper-plating baths containing ethylenediamine (En) has been developed. The method is based on the selective pre-capillary derivatization of Co(II) with 1,10-phenanthroline (Phen) followed by CE separation of stable [CoPhen(3)](2+), [CoEn(3)](3+), and [CuEn(2)](2+) chelates. The proposed derivatization procedure protects Co(II) from oxidation by dissolved oxygen and enables rapid determination of all three metal species within a single run. The optimized separations were carried out in a fused silica capillary (57 cmx75-microm I.D.) filled with an ethylenediamine sulfate electrolyte (20 mmol L(-1) H(2)SO(4), pH 7.0 with En, applied voltage +30 kV) using direct UV detection at 214 nm. The detection limits for a signal-to-noise ratio of 3 and 10 s, hydrodynamic injections were 5x10(-6) mol L(-1) for Cu(II), 1x10(-6) mol L(-1) for Co(III), and 4x10(-7) mol L(-1) for Co(II). Application of the method to the speciation of Co(II), Co(III), and Cu(II) in copper-plating bath samples is also demonstrated.  相似文献   

3.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

4.
Moya HD  Neves EA  Coichev N 《Talanta》1997,44(5):797-803
The evidences of spontaneous oxidation of Mn(II) by the dissolved oxygen in azide buffer medium, which is dependent on the N (-)(3)HN (3) concentration, suggested a formation of stable Mn(III) complexes due to marked colour changes. Spectrophotometric studies combined with coulometric generation of Mn(III), in presence of large excess of Mn(II), showed a maximum absorbance peak at 432 nm. The molar absorptivity increases with azide concentration (0.44-3.9 mol 1(-1)) from 3100 to 6300 mol(-1) 1 cm(-1), showing a stepwise complex formation. Potential measurements of the Mn(III) Mn(II) system in several azide aqueous buffers solutions: 1.0 x 10(-2) mol 1(-1) HN(3), (0.50-2.0 mol 1(-1)) N(-)(3) and 5.0 x 10(-2) mol 1(-1) Mn(II) and constant ionic strength 2.0 mol 1(-1), kept with sodium perchlorate, leads to the conditional potential, E(0')x, in several azide concentrations at 25.0 +/- 0.1 degrees C. Considering the overall formation constants of Mn(II) N (-)(3), from former studies, and the potential, E(0')s = 1.063 V versus SCE, for Mn(III) Mn(II) system in non-complexing media, it was possible to calculate the Fronaeus function, F(0)(L), and the following overall formation constants: beta(1) = 1.2 x 10(5) M(-1), beta(2) = 6.0 x 10(8) M(-2), beta(3) = (2.4 +/- 0.7) x 10(11) M(-3), beta(4) = (1.5 +/- 0.5) x 10(11) M(-4) and beta(5) = (9.6 +/- 0.8) x 10(11) M(-5) for the Mn(III) N (-)(3) complexes. These data give important support to understand the importance of Mn(II) and Mn(III) synergistic effect on the analytical method of S(IV) determination based on the Co(II) autoxidation.  相似文献   

5.
The reaction of Arl=NTs (Ar = 2-(tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) and (tpfc)Mn (tpfc=5,10,15-tris(pentafluorophenyl)corrole), 1, affords the high-valent (tpfc)MnV=NTs, 2, on stopped-flow time scale. The reaction proceeds via the adduct [(tpfc)MnIII(ArINTs)], 3, with formation constant K3 = (10 +/- 2) x 10(3) L mol-1. Subsequently, 3 undergoes unimolecular group transfer to give complex 2 with the rate constant k4 = 0.26 +/- 0.07 s-1 at 24.0 degrees C. The complex (tpfc)Mn catalyzes [NTs] group transfer from ArINTs to styrene substrates with low catalyst loading and without requirement of excess olefin. The catalytic aziridination reaction is most efficient in benzene because solvents such as toluene undergo a competing hydrogen atom transfer (HAT) reaction resulting in H2NTs and lowered aziridine yields. The high-valent manganese imido complex (tpfc)Mn=NTs does not transfer its [NTs] group to styrene. Double-labeling experiments with ArINTs and ArINTstBu (TstBu = (p-tert-butylphenyl)sulfonyl) establish the source of [NR] transfer as a "third oxidant", which is an adduct of Mn(V) imido, [(tpfc)Mn(NTstBu)(ArINTs)](4). Formation of this oxidant is rate limiting in catalysis.  相似文献   

6.
Deoxyhemerythrin reacts with NO to form a 1:1 adduct shown spectrophotometrically. The kinetics of the formation have been studied directly by stopped-flow measurements at four different temperatures (0.0-23.6 degrees C). The kinetics of the dissociation have been studied, also by stopped-flow techniques, at five different temperatures (4.0-35.1 degrees C) using three different scavengers [Fe(II)(edta)2-, O2 and sperm whale deoxymyoglobin], which gave similar values. For the formation kf = (4.2 +/- 0.2) x 10(6) M-1 s-1, delta Hf not equal = 44.3 +/- 2.3 kJ mol-1, delta Sf not equal to = 30 +/- 8 J mol-1 K-1 and for the dissociation kd = 0.84 +/- 0.02 s-1, delta Hd not equal to 95.6 +/- 2.1 kJ mol-1 delta Sd not equal to = 74 +/- 7 J mol-1 K-1 (25 degrees C, I = 0.2 M and pH 7-8.1). From the kinetic data the thermodynamic data for the formation of HrNO were calculated: Kf = (5.0 +/- 0.3) x 10(6) M-1, delta H = -51.3 +/- 3.1 kJ mol-1 and delta S = -44 +/- 11 J mol-1 K-1 (25 degrees C). The kinetic data suggest that NO occupies the same iron(II) site in deoxyhemerythrin as oxygen does. The equilibrium constant for the formation of Fe(II)(edta)(NO)2- has been redetermined: K1 = (1.45 +/- 0.07) x 10(7) M-1, delta H = -77.5 +/- 1.5 kJ and mol-1 and delta S = -123.5 J mol-1 K-1 (25 degrees C).  相似文献   

7.
The kinetics and the equilibria of Ni(II) binding to p-hydroxybenzohydroxamic acid (PHBHA) and salicylhydroxamic acid (SHA) have been investigated in an aqueous solution at 25 degrees C and I=0.2 M by the stopped-flow method. Two reaction paths involving metal binding to the neutral acid and to its anion have been observed. Concerning PHBHA, the rate constants of the forward and reverse steps are k1=(1.9+/-0.1)x10(3) M-1 s-1 and k-1=(1.1+/-0.1)x10(2) s-1 for the step involving the undissociated PHBHA and k2=(3.2+/-0.2)x10(4) M-1 s-1 and k-2=1.2+/-0.2 s-1 for the step involving the anion. Concerning SHA, the analogous rate constants are k1=(2.6+/-0.1)x10(3) M-1 s-1, k-1=(1.3+/-0.1)x10(3) s-1, k2=(5.4+/-0.2)x10(3) M-1 s-1, and k-2=6.3+/-0.5 s-1. These values indicate that metal binding to the anions of the two acids concurs with the Eigen-Wilkins mechanism and that the phenol oxygen is not involved in the chelation. Moreover, a slow effect was observed in the SHA-Ni(II) system, which has been put down to rotation of the benzene ring around the C-C bond. Quantum mechanical calculations at the B3LYP/lanL2DZ level reveal that the phenol group in the most stable form of the Ni(II) chelate is in trans position relative to the carbonyl oxygen, contrary to the free SHA structure, where the phenol and carbonyl oxygen atoms both have cis configuration. These results bear out the idea that the complex formation is coupled with phenol rotation around the C-C bond.  相似文献   

8.
The synthesis of syn,anti-[Co(cyclen)en](ClO4)3 (1(ClO4)3) and syn,anti-[Co(cyclen)tn](ClO4)3 (2(ClO4)3) is reported, as are single-crystal X-ray structures for syn,anti-[Co(cyclen)(NH3)2](ClO4)3 (3(ClO4)3). 3(ClO4)3: orthorhombic, Pnma, a = 17.805(4) A, b = 12.123(3) A, c = 9.493(2) A, alpha = beta = gamma = 90 degrees, Z = 4, R1 = 0.030. 1(ClO4)3: monoclinic, P2(1)/n, a = 8.892(2) A, b = 15.285(3) A, c = 15.466(3) A, alpha = 90 degrees, beta = 91.05(3) degrees, gamma = 90 degrees, Z = 4, R1 = 0.0657. 2Br3: orthorhombic, Pca2(1) a = 14.170(4) A, b = 10.623(3) A, c = 12.362(4) A, alpha = beta = gamma = 90 degrees, Z = 4, R1 = 0.0289. Rate constants for H/D exchange (D2O, I = 1.0 M, NaClO4, 25 degrees C) of the syn and anti NH protons (rate law: kobs = ko + kH[OD-]) and the apical NH, and the NH3 and NH2 protons (rate law: kobs = kH[OD-]) in the 1, 2, and 3 cations are reported. Deprotonation constants (K = [Co(cyclen-H)(diamine)2+]/[Co(cyclen)(diamine)3+][OH-]) were determined for 1 (5.5 +/- 0.5 M-1) and 2 (28 +/- 3 M-1). In alkaline solution 1, 2, and 3 hydrolyze to [Co(cyclen)(OH)2]+ via [Co(cyclen)(amine)OH)]2+ monodentates. Hydrolysis of 3 is two step: kobs(1) = kOH(1)[OH-], kobs(2) = ko + kOH(2)[OH-] (kOH(1) = (2.2 +/- 0.4) x 10(4) M-1 s-1, ko = (5.1 +/- 1.2) x 10(-4) s-1, kOH(2) = 1.0 +/- 0.1 M-1 s-1). Hydrolysis of 2 is biphasic: kobs(1) = k1K[OH-]/(1 + K[OH-] (k1 = 5.0 +/- 0.2 s-1, K = 28 M-1), kobs(2) = k2K2[OH-]/(1 + K2[OH-]) (k2 = 3.5 +/- 1.2 s-1, K2 = 1.2 +/- 0.8 M-1). Hydrolysis of 1 is monophasic: kobs = k1k2KK2[OH-]2/(1 + K[OH-1])(k-1 + k2K2[OH-]) (k1 = 0.035 +/- 0.004 s-1, k-1 = 2.9 +/- 0.6 s-1, K = 5.5 M-1, k2K2 = 4.0 M-1 s-1). The much slower rate of chelate ring-opening in 1, compared to loss of NH3 from 3, is rationalized in terms of a reduced ability of the former system to allow the bond angle expansion required to produce the SN1CB trigonal bipyramidal intermediate.  相似文献   

9.
Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo and metal-hydroperoxo intermediates of M(III)MP-8 upon reaction of H(2)O(2) with Fe(III)MP-8 and Mn(III)MP-8 was investigated by rapid-scan stopped-flow spectroscopy and transient EPR. Two steps (k(obs1) and k(obs2)) were observed and analyzed for the reaction of hydrogen peroxide with both catalysts. The plots of k(obs1) as function of [H(2)O(2)] at pH 8.0 and pH 9.1 for Fe(III)MP-8, and at pH 10.2 and pH 10.9 for Mn(III)MP-8, exhibit saturation kinetics, which reveal the accumulation of an intermediate. Double reciprocal plots of 1/k(obs1) as function of 1/[H(2)O(2)] at different pH values reveal a competitive effect of protons in the oxidation of M(III)MP-8. This effect of protons is confirmed by the linear dependence of 1/k(obs1) on [H(+)] showing that k(obs1) increases with the pH. The UV-visible spectra of the intermediates formed at the end of the first step (k(obs1)) exhibit a spectrum characteristic of a high-valent metal-oxo intermediate for both catalysts. Transient EPR of Mn(III)MP-8 incubated with an excess of H(2)O(2), at pH 11.5, shows the detection of a free radical signal at g approximately equal to 2 and of a resonance at g approximately equal to 4 characteristic of a Mn(IV) (S = 3/2) species. On the basis of these results, the following mechanism is proposed: (i) M(III)MP-8-OH(2) is deprotonated to M(III)MP-8-OH in a rapid preequilibrium step, with a pK(a) = 9.2 +/- 0.9 for Fe(III)MP-8 and a pK(a) = 11.2 +/- 0.3 for Mn(III)MP-8; (ii) M(III)MP-8-OH reacts with H(2)O(2) to form Compound 0, M(III)MP8-OOH, with a second-order rate constant k(1) = (1.3 +/- 0.6) x 10(6) M(-1) x s(-1) for Fe(III)MP-8 and k(1) = (1.6 +/- 0.9) x 10(5) M(-1) x s(-1) for Mn(III)MP-8; (iii) this metal-hydroperoxo intermediate is subsequently converted to a high-valent metal-oxo species, M(IV)MP-8=O, with a free radical on the peptide (R(*+)). The first-order rate constants for the cleavage of the hydroperoxo group are k(2) = 165 +/- 8 s(-1) for Fe(III)MP-8 and k(2) = 145 +/- 7 s(-1) for Mn(III)MP-8; and (iv) the proposed M(IV)MP-8=O(R(*+)) intermediate slowly decays (k(obs2)) with a rate constant of k(obs2) = 13.1 +/- 1.1 s(-)(1) for Fe(III)MP-8 and k(obs2) = 5.2 +/- 1.2 s(-1) for Mn(III)MP-8. The results show that Compound 0 is formed prior to what is analyzed as a high-valent metal-oxo peptide radical intermediate.  相似文献   

10.
The interactions of a weak organic acid (acetic acid, HOAc) with a toluene solution of the Co(II)-Schiff base type complex, (R,R')-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino Co(II) (labeled [Co(1)]), was investigated using EPR, HYSCORE, and DFT computations. This activated [Co(II)(1)] system is extremely important within the context of asymmetric catalysts (notably the hydrolytic kinetic resolution of epoxides) despite the lack of detailed structural information about the nature of the paramagnetic species present. Under anaerobic conditions, the LS [Co(II)(1)] complex with a |yz, (2)A(2)? ground state is converted into a low-spin (LS) and a high-spin (HS) complex in the presence of the acid. The newly formed LS state is assigned to the coordinated [Co(II)(1)]-(HOAc) complex, possessing a |z(2), (2)A(1)? ground state (species A; g(x) = 2.42, g(y) = 2.28, g(z) = 2.02, A(x) = 100, A(y) = 120, A(z) = 310 MHz). The newly formed HS state is assigned to an acetate coordinated [Co(II)(1)]-(OAc(-)) complex, possessing an S = (3)/(2) spin ground state (species B, responsible for a broad EPR signal with g ≈ 4.6). These spin ground states were confirmed with DFT calculations using the hybrid BP86 and B3LYP functionals. Under aerobic conditions, the LS and HS complexes (species A and B) are not observed; instead, a new HS complex (species C) is formed. This complex is tentatively assigned to a paramagnetic superoxo bridged dimer (AcO(-))[Co(II)(1)···O(2)(-)Co(III)(1)](HOAc), as distinct from the more common diamagnetic peroxo bridged dimers. Species C is characterized by a very broad HS EPR signal (g(x) = 5.1, g(y) = 3.9, g(z) = 2.1) and is reversibly formed by oxygenation of the LS [Co(II)(1)]-(HOAc) complex to the superoxo complex [Co(III)(1)O(2)(-)](HOAc), which subsequently forms the association complex C by interaction with the HS [Co(II)(1)](OAc(-)) species. The LS and HS complexes were also identified using other organic acids (benzoic and propanoic acid). Thermal annealing-quenching experiments revealed the additional presence of [Co(III)(1)O(2)(-)](HOAc) adducts, corroborating the presence of species C and the presence of diamagnetic dimer complexes in the solution, such as the EPR silent (HOAc)[Co(III)(1)(O(2)(2-))Co(III)(1)](HOAc). Overall, it appears that a facile interconversion of the [Co(1)] complex, possessing a LS ground state, occurs in the presence of acetic acid, producing both HS and LS Co(II) states, prior to formation of the oxidized active form of the catalyst, [Co(III)(1)](OAc(-)).  相似文献   

11.
The transfer of a hydrogen atom from iron(II)-tris[2,2'-bi(tetrahydropyrimidine)], [FeII(H2bip)3]2+, to the stable nitroxide, TEMPO, was studied by stopped-flow UV-vis spectrophotometry. The products are the deprotonated iron(III) complex [FeIII(H2bip)2(Hbip)]2+ and the hydroxylamine, TEMPO-H. This reaction can also be referred to as proton-coupled electron transfer (PCET). The equilibrium constant for the reaction is close to 1; thus, the reaction can be driven in either direction. The rate constants for the forward and reverse reactions at 298 K are k1 = 260 +/- 30 M-1 s-1 and k-1 = 150 +/- 20 M-1 s-1. Interestingly, the rate constant for the forward reaction decreases as reaction temperature is increased, implying a negative activation enthalpy: DeltaH1 = -2.7 +/- 0.4 kcal mol-1, DeltaS1 = -57 +/- 8 cal mol-1 K-1. Marcus theory predicts this unusual temperature dependence on the basis of independently measured self-exchange rate constants and equilibrium constants: DeltaHcalcd = -3.5 +/- 0.5 kcal mol-1, DeltaScalcd = -42 +/- 10 cal mol-1 K-1. This result illustrates the value of the Marcus approach for these types of reactions. The dominant contributor to the negative activation enthalpy is the favorable enthalpy of reaction, DeltaH1 degrees = -9.4 +/- 0.6 kcal mol-1, rather than the small negative activation enthalpy for the H-atom self-exchange between the iron complexes.  相似文献   

12.
The synergistic effect of Ni(II) and Co(II) on the sulfite induced autoxidation of Cu(II)/tetraglycine was investigated spectrophotometrically at 25.0 degrees C, pH = 9.0, 1 x 10(-5) mol dm(-3) < or = [S(IV)] < or = 8 x 10(-5) mol dm(-3), [Cu(II)]= 1 x 10(-3) mol dm(-3), 1 x 10(-6) mol dm(-3) < or = [Ni(II)] or [Co(II)] < or = 1 x 10(-4) mol dm(-3), [O2] approximately 2.5 x 10(-4) mol dm(-3), and 0.1 mol dm(-3) ionic strength. In the absence of added nickel(II) or cobalt(II), the kinetic traces of Cu(III)G4 formation show a large induction period (about 3 h). The addition of trace amounts of Ni(II) or Co(II) increases the reaction rate significantly and the induction period drastically decreases (less than 0.5 s). The effectiveness of Cu(III)G4 formation becomes much higher. The metal ion in the trivalent oxidation state rapidly oxidizes SO3(2-) to SO3*-, which reacts with oxygen to produce SO5*-. The strongly generated oxidants oxidize Cu(II)G4 to Cu(III).  相似文献   

13.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   

14.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

15.
The ligand substitution reactions of trans-[CoIII(en)2(Me)H2O]2+, a simple model for coenzyme B12, were studied for cyanide and imidazole as entering nucleophiles. It was found that these nucleophiles displace the coordinated water molecule trans to the methyl group and form the six-coordinate complex trans-[Co(en)2(Me)L]. The complex-formation constants for cyanide and imidazole were found to be (8.3 +/- 0.7) x 10(4) and 24.5 +/- 2.2 M-1 at 10 and 12 degrees C, respectively. The second-order rate constants for the substitution of water were found to be (3.3 +/- 0.1) x 10(3) and 198 +/- 13 M-1 s-1 at 25 degrees C for cyanide and imidazole, respectively. From temperature and pressure dependence studies, the activation parameters delta H++, delta S++, and delta V++ for the reaction of trans-[CoIII(en)2(Me)H2O]2+ with cyanide were found to be 50 +/- 4 kJ mol-1, 0 +/- 16 J K-1 mol-1, and +7.0 +/- 0.6 cm3 mol-1, respectively, compared to 53 +/- 2 kJ mol-1, -22 +/- 7 J K-1 mol-1, and +4.7 +/- 0.1 cm3 mol-1 for the reaction with imidazole. On the basis of reported activation volumes, these reactions follow a dissociative mechanism in which the entering nucleophile could be weakly bound in the transition state.  相似文献   

16.
13C NMR was used to study the rate of DMF exchange in the nickel(II) cation Ni(DMF)6(2+) and in the monochloro species Ni(DMF)5Cl+ with 13C-labeled DMF in the temperature range of 193-395 K in DMF (DMF = N,N-dimethylformamide). The kinetic parameters for solvent exchange are kex = (3.7 +/- 0.4) x 10(3) s-1, delta H++ = 59.3 +/- 5 kJ mol-1, and delta S++ = +22.3 +/- 14 J mol-1 K-1 for Ni(DMF)6(2+) and kex = (5.3 +/- 1) x 10(5) s-1, delta H++ = 42.4 +/- 4 kJ mol-1, and delta S++ = +6.7 +/- 15 J mol-1 K-1 for Ni(DMF)5Cl+. Multiwavelength stopped-flow spectrophotometry was used to study the kinetics of complex formation of the cation Ni(DMF)6(2+) and of the 100-fold more labile cation Ni(DMF)5Cl+ with TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and TEC (1,4,8,11-tetraethyl-1,4,8,11-tetraazacyclotetradecane) in DMF at 298 K and I = 0.6 M (tetra-n-butylammoniumperchlorate). Equilibrium constants K for the addition of the nucleophiles DMF, Cl-, and Br- to the complexes Ni(TMC)2+ and Ni(TEC)2+ were determined by spectrophotometric titration. Formation of the complexes Ni(TMC)2+ and Ni(TEC)2+ was found to occur in two stages. In the initial stage, fast, second-order nickel incorporation with rate constants k1(TMC) = 99 +/- 5 M-1 s-1 and k1 (TEC) = 235 +/- 12 M-1 s-1 leads to the intermediates Ni(TMC)int2+ and Ni(TEC)int2+, which have N4-coordinated nickel. In the second stage, these intermediates rearrange slowly to form the stereochemically most stable configuration. First-order rate constants for the one-step rearrangement of Ni(TMC)int2+ and the two-step rearrangment of Ni(TEC)int2+ are presented. Because of the rapid formation of Ni(DMF)5Cl+, the reactions of Ni(DMF)6(2+) with TMC and TEC are accelerated upon the addition of tetra-n-butylammoniumchloride (TBACl) and lead to the complexes Ni(TMC)Cl+ and Ni(TEC)Cl+, respectively. For initial concentrations such that [TBACl]o/[nickel]o > or = 20, intermediate formation is 230 times (TMC) and 47 times (TEC) faster than in the absence of chloride. The mechanism of complex formation is discussed.  相似文献   

17.
A series of isostructural cyano-bridged Mn(III)(h.s.)-M(III)(l.s.) alternating chains, [Mn(III)(5-TMAMsalen)M(III)(CN)(6)]?4H(2)O (5-TMAMsalen(2-)=N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate), Mn(III)(h.s.)=high-spin Mn(III), M(III)(l.s.)=low-spin Co(III), Mn-Co; Fe(III), Mn-Fe; Mn(III), Mn-Mn; Cr(III), Mn-Cr) was synthesized by assembling [Mn(III)(5-TMAMsalen)](3+) and [M(III)(CN)(6)](3-). The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [-Mn(III)-NC-M(III)-CN-] repeating motif, for which the -NC-M(III)-CN- motif is provided by the [M(III)(CN)(6)](3-) moiety adopting a trans bridging mode between [Mn(III)(5-TMAMsalen)](3+) cations. The Mn(III) and M(III) ions occupy special crystallographic positions: a C(2) axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn-Teller axis of the Mn(III)(h.s.) ion is perpendicular to the N(2)O(2) plane formed by the 5-TMAMsalen tetradentate ligand. These Jahn-Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn-N(axis) -C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter-chain M???M distance being relatively large at 9?? due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5-TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn-Fe and Mn-Mn display intra-chain ferromagnetic interactions, whereas Mn-Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single-chain magnet (SCM) behavior of these three systems, whereas Mn-Co is merely paramagnetic with S(Mn)=2 and D/k(B)=-5.3?K (D being a zero-field splitting parameter). At low temperatures, the Mn-M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite-chain and finite-chain regimes for the SCM behavior. These isostructural hetero-spin SCMs offer a unique series of alternating [-Mn-NC-M-CN-] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits.  相似文献   

18.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

19.

Heterobi- and tri-nuclear complexes [LMM'Cl] and [(LM) 2 M'](M=Ni or Cu and M'=Mn, Fe or Co) have been synthesised. The heteronuclear complexes were prepared by stepwise reactions using two mononuclear Ni(II) and Cu(II) complexes of the general formula [HLM]·1/2H 2 O, as ligands towards the metal ions, Mn(II), Fe(III) and Co(II). The asymmetrical pentadentate (N 2 O 3 ) Schiff-base ligands used were prepared by condensing acetoacetylphenol and ethylenediamine, molar ratio 1 1, to yield a half-unit compound which was further condensed with either salicylaldehyde or naphthaldehyde to yield the ligands H 3 L 1 and H 3 L 2 which possess two dissimilar coordination sites, an inner four-coordinate N 2 O 2 donor set and an outer three-coordinated O 2 O set. 1 H NMR and IR spectra indicate that the Ni(II) and Cu(II) ions are bonded to the inner N 2 O 2 sites of the ligands leaving their outer O 2 O sites vacant for further coordination. Different types of products were obtained according to the type of metal ion. These products differ in stoichiometry according to the type of ligand in the parent compound. Electronic spectra and magnetic moments indicate that the structures of the parent Ni(II) and Cu(II) complexes are square-planar while the geometry around Fe(III), Mn(II) and Co(II) in their products are octahedral as elucidated from IR, UV-visible, ESR, 1 H NMR, mass spectrometry and magnetic moments.  相似文献   

20.
The linear-type heterometallic tetramers, [Mn(III)(2)(5-MeOsaltmen)(2)M(II)(2)(L)(2)](CF(3)SO(3))(2) x 2H(2)O (MII = Cu, 1a; Ni, 2a), where 5-MeOsaltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene) bis(5-methoxysalicylideneiminate), and H(2)L = 3-{2-[(2-hydroxy-benzylidene)-amino]-2-methyl-propylimino}-butan-2-one oxime, have been synthesized and characterized from structural and magnetic points of view. These two compounds are isostructural and crystallize in the same monoclinic P2(1)/n space group. The structure has a [M(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-M(II)] skeleton, where -NO- is a linking oximato group derived from the non-symmetrical Schiff-base complex [M(II)(L)] and -(O)(2)- is a biphenolato bridge in the out-of-plane [Mn(2)(5-MeOsaltmen)(2)](2+) dimer. The solvent-free compounds, 1b and 2b, have also been prepared by drying of the parent compounds, 1a and 2a, respectively, at 100 degrees C under dried nitrogen. After this treatment, the crystallinity is preserved, and 1b and 2b crystallize in a monoclinic P2(1)/c space group without significant changes in their structures in comparison to 1a and 2a. Magnetic measurements on 1a and 1b revealed antiferromagnetic Mn(III)---Cu(II) interactions via the oximato group and weak ferromagnetic Mn(III)---Mn(III) interactions via the biphenolato bridge leading to an S(T) = 3 ground state. On the other hand, the diamagnetic nature of the square planar Ni(II) center generates an S(T) = 4 ground state for 2a and 2b. At low temperature, these solvated (a) and desolvated (b) compounds display single-molecule magnet behavior modulated by their spin ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号