首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
A systematic investigation of the M+BF4 (M = Li or NH4) ion-pair conformers has been carried out using an electrostatic docking model based on the molecular electrostatic potential topography of the free anion. This method provides a guideline for the subsequent ab initio molecular orbital calculations at the Hartree-Fock (HF) and second-order M?ller-Plesset perturbation theory (MP2) levels. It has been demonstrated that the model presented here yields more than 75% of the HF interaction energy when Li+ is the cation involved and more than 90% for the case of NH4 +. Inclusion of MP2 correlation in the HF-optimized geometries leads to stationary point geometries with different numbers of imaginary frequencies and in some places where the energies of two adjacent conformers are very close, the energy rank order is altered. The HF lowest-energy minima for the Li+BF4 and NH4 +BF4 show a bidentate and tridentate coordinating cation, respectively, whereas at the MP2 level, this ordering is reversed. Received: 9 September 1997 / Accepted: 5 November 1997  相似文献   

2.
The significance of the so-called trigger reaction in the reaction mechanism of the calicheamicin γ1 I anti-cancer drug has been studied with ab initio quantum chemical methods. The structures of four fragments of calicheamicin γ1 I , consisting of either 39 or 41 atoms, have been fully optimized using the Becke-Perdew86 density functional method and the 6-31G* basis sets. The four structures constitute members of an isodesmic reaction for which the reaction energy is a direct measure of the change in activation energy of the Bergman reaction, caused by the structural rearrangements of the preceding trigger reaction. This difference in activation energy has been calculated with density functional theory, using the exchange-correlation functional mentioned above, and with second-order M?ller-Plesset perturbation theory (MP2), employing an ANO-type basis set. In both cases a value of 12 kcal/mol is obtained. The study firmly supports the hypothesis that the significance of the trigger reaction is to saturate a double bond in the vicinity of the enediyne group, which counteracts the formation of the biradical state of the drug. The MP2 computations became feasible by a novel implementation of an integral-direct, distributed-data, parallel MP2 algorithm. Received: 10 January 1997 / Accepted: 1 April 1997  相似文献   

3.
 This work is related to the interaction of water with two platinum(II) complexes, [Pt(NH3)4]2+ (denoted 1) and trans-[Pt(OH)2(NH3)2] (denoted 2). We have considered two approaches of a water molecule to complexes 1 and 2 along the z-axis normal to the platinum(II) coordination plane: approach I, with the water oxygen oriented towards Pt, and approach II, with one water hydrogen directed towards Pt. Calculations have been performed within a molecular mechanics method based upon the interaction potentials proposed earlier by Claverie et al. and subsequently adjusted to results obtained with symmetry – adapted perturbational theory as well as with supermolecule (up to second-order M?ller–Plesset, MP2) methods. We discuss some possible simplifications of the potentials mentioned. The results relative to the hydration of Pt complexes 1 and 2 following approach I or II are discussed and compared to recent (MP2) ab initio energy–distance curves that we have recently determined. The MP2 calculations have shown that besides exchange–repulsion contributions, which are very similar in all hydrated complexes, approach I is mainly governed by electrostatics, whereas for approach II both electrostatic and dispersion contributions are important. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 5 June 2000  相似文献   

4.
The reaction between triplet methylene and nitric oxide, producing the formaldiminoxy (CH2NO) radical, and the subsequent decomposition and isomerization reactions of CH2NO have been studied using ab␣initio quantum chemical techniques that include the Gaussian-2 (G2), CASSCF and CASPT2 methods. Stationary points on the potential energy surfaces were located at MP2/6-31G(d) and CASSCF/cc-pVDZ levels of theory, while the electronic energies were determined using G2, G2(MP2), QCISD(T)/cc-pVTZ, RCCSD(T)/cc-pVTZ and CASPT2/cc-pVTZ approaches. G2 is believed to be reliable at equilibrium geometries, but the determination of certain transition state geometries and energies requires a MCSCF-based approach. The calculations suggest that CH2NO (2A) forms in a barrierless reaction and could readily decompose to H+HCNO. A subsequent abstraction reaction then results in H2+CNO. No molecular elimination channel was found. An alternative pathway is the formation of CH2ON, which readily isomerizes to CH2NO. Received: 8 May 1998 / Accepted: 11 August / Published online: 9 October 1998  相似文献   

5.
 For the intermolecular interaction energies of ion-water clusters [OH(H2O) n (n=1,2), F(H2O), Cl(H2O), H3O+(H2O) n (n=1,2), and NH4 +(H2O) n (n=1,2)] calculated with correlation-consistent basis sets at MP2, MP4, QCISD(T), and CCSD(T) levels, the basis set superposition error is nearly zero in the complete basis set (CBS) limit. That is, the counterpoise-uncorrected intermolecular interaction energies are nearly equal to the counterpoise-corrected intermolecular interaction energies in the CBS limit. When the basis set is smaller, the counterpoise-uncorrected intermolecular interaction energies are more reliable than the counterpoise-corrected intermolecular interaction energies. The counterpoise-uncorrected intermolecular interaction energies evaluated using the MP2/aug-cc-pVDZ level is reliable. Received: 14 March 2001 / Accepted: 25 April 2001 / Published online: 9 August 2001  相似文献   

6.
The equilibrium geometric parameters and structures of transition states of internal rotation for the molecules of methyldicyanophospine MeP(CN)2 and its isocyano analog MeP(NC)2 were calculated by the RHF and MP2 methods with the 6–31G* and 6–31G** basis sets. At the MP2 level, the total energy of cyanide is −35 kcal mol−1 lower than that of isocyanide and the barriers to internal rotation of methyl group for MeP(CN)2 and MeP(NC)2 are 2.2 and 2.7 kcal mol−1, respectively. For both molecules, the one-dimensionalab initio potential functions of internal rotation approximated by a truncated Fourier series were used to determine the frequencies of torsional transitions by solving direct vibrational problems for a non-rigid model. The Raman spectrum of crystalline MeP(CN)2 was recorded in the range 3500–50 cm−1. The vibrational spectra of this compound were interpreted by scalingab initio force fields calculated by the RHF and MP2 method. The vibrational spectrum of methyldiisocyanophosphine was predicted with the use of the obtained scale factors. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1703–1714, September, 1998.  相似文献   

7.
The potential energy hypersurface of protonated glycine, GH+, has been investigated. The calculated G2(MP2) value for the proton affinity (PA) of glycine, PA calc=895kJ mol−1, is in good agreement with the experimental value which has been estimated to lie in the range 864kJ mol−1 < PA exp <891kJ mol−1. Ab initio quantum chemical calculations of relevant parts of the potential energy surface of GH+ give a reaction model which is consistent with the observed mass spectrometric fragmentation pattern. The lowest energy unimolecular reactions of GH+ are two distinct processes: (1) loss of CO, which has a substantial barrier for the reverse reaction, and (2) loss of CO plus H2O, which has no barrier for the reverse reaction. Received: 15 November 1996 / Accepted: 6 May 1997  相似文献   

8.
Ab initio quantum chemistry methods were applied to study the bifurcated bent hydrogen bonds Y··· H2CZ (Z = O, S, Se) and Y···H2CZ2 (Z = F, Cl, Br) (Y = Cl, Br) at the MP2/6-311++G(d,p) and MP2/6-311++G(2df,2p) levels. The results show that in each complex there are two equivalent blue-shifted H-bonds Y···H-C, and that the interaction energies and blue shifts are large, the energy of each Y···H-C H-bond is 15–27 kJ/mol, and Δr(CH) = −0.1 − −0.5 pm and Δv(CH) = 30 − 80 cm−1. The natural bond orbital analysis shows that these blue-shifted H-bonds are caused by three factors: large rehybridization; small direct intermolecular hyperconjugation and larger indirect intermolecular hyperconjugation; large decrease of intramolecular hyperconjugation. The topological analysis of electron density shows that in each complex there are three intermolecular critical points: there is one bond critical point between the acceptor atom Y and each hydrogen, and there is a ring critical point inside the tetragon YHCH, so these interactions are exactly H-bonding.  相似文献   

9.
Ab initio calculations at MP2 computational level using aug-cc-pVTZ basis set were used to analyze the interactions between 1:1 and 1:2 complexes of acetylene and nitrosyl hydride. The structures obtained have been analyzed with the atoms in molecules and the density functional theory–symmetry adapted perturbation theory methodologies. Four minima were located on the potential energy surface of the 1:1 complex. Twenty-four different structures have been obtained for the 1:2 complexes. Five types of interactions are observed, CH···O, CH···N, NH···π hydrogen bonds and orthogonal interactions between the π clouds of triple bond, or the lone pair of oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of the 1:1 and 1:2 clusters including basis set superposition error and ZPE are in the range 3–8 and 6–17 kJ mol−1 at MP2/aug-cc-pVTZ computational level, respectively. Blue shift of NH bond upon complex formation in the ranges between 18–30 and 20–96 cm−1 is predicted for 1:1 and 1:2 clusters, respectively. The total nonadditive energy in the 1:2 cluster, calculated as the sum of the supermolecular nonadditive MP2 energy and the three-body dispersion energy, presents values between −1.48 and 1.20 kJ mol−1.  相似文献   

10.
The results of various ab initio calculations are reported for the electronic ground state of the acetylide anion. An “Eyring's lake” in the T-shaped configuration is identified with six different methods (SCF, MP2, CCSD, CCSD-T, CCSD(T), and CEPA–1). The equilibrium bond lengths of HCC are estimated to be r e (CH)=1.0689(3) ? and R e (CC)=1.2464(2) ?, and the ground-state rotational constant is predicted to be B 0=41636(20)MHz. The large permanent dipole moment of μ0=−3.093D should facilitate detection of the anion by microwave spectroscopy. The band centers are predicted to be 3211.3cm−11), 511.1cm−12), and 1805.0cm−13). A large transition dipole moment of 0.477 D is calculated for the ν2 band. Rovibrational levels of HCC up to approximately 20 000 cm−1 above equilibrium are calculated with DVR-DGB and FBR methods on the basis of a previous CEPA–1 potential energy surface. Different energy patterns are found and discussed, for which anharmonic and Coriolis resonances are shown to play an important role. Received: 27 July 1998 Accepted: 12 August 1998 / Published online: 19 October 1998  相似文献   

11.
Density functional theory (DFT) with the Becke's three-parameter exchange correlation functional and the functional of Lee, Yang and Parr, gradient-corrected functionals of Perdew, and Perdew and Wang [the DFT(B3LYP), DFT(B3P86) and DFT(B3PW91) methods, respectively], and several levels of conventional ab initio post-Hartree-Fock theory (second- and fourth-order perturbation theory M?ller-Plesset MP2 and MP4(SDTQ), coupled cluster with the single and double excitations (CCSD), and CCSD with perturbative triple excitation [CCSD(T)], configuration interaction with the single and double excitations [CISD], and quadratic configuration interaction method [QCISD(T)], using several basis sets [ranging from a simple 6-31G(d,p) basis set to a 6-311+ +G(3df, 2pd) one], were applied to study of the molecular structure (geometrical parameters, rotational constants, dipole moment) and harmonized infrared (IR) spectrum of formaldehyde (CH2O). High-level ab initio methods CCSD(T) and QCISD(T) with the 6-311+ +G(3df, 2pd) predict correctly molecular parameters, vibrational harmonic wavenumbers and the shifts of the harmonic IR spectrum of 12CH2 16O upon isotopic substitution. Received: 30 January 1997 / Accepted: 7 May 1997  相似文献   

12.
 The second-order correlation energy of M?ller–Plesset perturbation theory is computed for the neon atom using a wave function that depends explicitly on the interelectronic coordinates (MP2-R12). The resolution-of-identity (RI) approximation, which is invoked in the standard formulation of MP2-R12 theory, is largely avoided by rigorously computing the necessary three-electron integrals. The basis-set limit for the second-order correlation energy is reached to within 0.1 mE h. A comparison with the conventional RI-based MP2-R12 method shows that only three-electron integrals over s and p orbitals need to be computed exactly, indicating that the RI approximation can be safely used for integrals involving orbitals of higher angular momentum. Received: 9 May 2001 / Accepted: 31 October 2001 / Published online: 9 January 2002  相似文献   

13.
β, γ-Substituted γ-halo allylalkoxide ions decompose to form a halogen ion, formaldehyde, and an alkyne under mild conditions, for example at room temperature. The E isomer does not differ from the Z isomer in terms of activation energy. We attempted to shed light on the mechanism of the reaction by using ab initio molecular orbital calculations. The observed propensity was confirmed by the present calculation on model molecules, γ-chloro allylalkoxide ions. We conducted further calculations and compared the alkoxide results with a similar reaction of β-haloacrylate ions that release carbon dioxide instead of formaldehyde. This similar reaction needs heating as high as 150°C. The activation energy of the acrylate ions (36–39 kcal mol−1) was calculated to be about 10 kcal mol−1 higher than that of the alkoxide ions. The activation energy of the E acrylate ion is smaller by 0.8 kcal mol−1 than that of the Z isomer at the MP2/6-31+G**//RHF/6-31+G* level of theory. This is consistent with experimental results. While the ready deprotonation from the carboxylic group does not activate the acrylate ion very much, the alkoxide ion is destabilized to a great degree in the process of anion formation. The difficulty in deprotonation that proceeds from the neutral molecule is seen in the difference in the activation energies for the decomposition of the corresponding anions. Therefore, the pK a of a hydroxy or a carboxylic group plays the leading role in determining the magnitude of activation energies of allyl halides with a negatively charged fragment. Received: 2 July 1998 / Accepted: 9 September 1998 / Published online: 8 February 1999  相似文献   

14.
 Kinetic isotope effects, KIEs, for hydrogen abstraction from C2H6 and C2D6 by chlorine atom have been studied by the dual-level direct dynamics approach. A low-level potential energy surface is obtained with the MNDO-SRP method. High-level structural properties of the reactants, transition state, and products were obtained at the MP2 level with the cc-pVDZ, aug-cc-pVDZ, and the cc-pVTZ basis sets. Using the variational transition state theory with microcanonical optimized multidimensional tunneling, the values of deuterium KIE, at 300 K, range from 2.28 to 3.27, in good agreement with the experimental values (2.69–5.88). Received: 6 June 2001 / Accepted: 12 July 2001 / Published online: 19 November 2001  相似文献   

15.
Fourth-order M?ller–Plesset (MP4) correlation energies are computed for 28 atoms and simple molecules employing Dunning's correlation-consistent polarized-valence m-zeta basis sets for m=2, 3, 4, and 5. Extrapolation formulas are used to predict MP4 energies for infinitely large basis sets. It is shown that both total and partial MP4 correlation energies can be extrapolated to limit values and that the sum of extrapolated partial MP4 energies equals the extrapolated total MP4 correlation energy within calculational accuracy. Therefore, partial MP4 correlation energies can be presented in the form of an MP4 spectrum reflecting the relative importance of different correlation effects. Typical trends in calculated correlation effects for a given class of electron systems are independent of the basis set used. As first found by Cremer and He [(1996) J Phys Chem 100:6173], one can use MP4 spectra to distinguish between electron systems with well-separated electron pairs and systems for which electrons cluster in a confined region of atomic or molecular space. MP4 spectra for increasing size of the basis set reveal that smaller basis set calculations underestimate the importance of three-electron correlation effects for both classes by overestimating the importance of pair correlation effects. The minimum size of a basis set required for reliable MP4 calculations is given by a valence triple-zeta polarized basis, which even in the case of anions performs better than a valence double-zeta basis augmented by diffuse functions. Received: 14 June 2000 / Accepted: 16 June 2000 / Published online: 24 October 2000  相似文献   

16.
The reaction between a mesylated compound and sodium azide was previously studied experimentally at a temperature of 140 °C using dimethylformamide as a solvent. The product was assigned on the basis of the analysis of the NMR spectra. In this work semiempirical (AM1 and PM3), ab initio (Hartree–Fock and MP2) and density functional theory (BLYP functional) quantum mechanical calculations, using continuum models for describing the solvent effect, were carried out for this process to better understand the reaction mechanism. Three distinct mechanisms involving a carbocation and epoxide intermediates, and a transition-state structure for direct attack of the N3 species to the reactant were investigated. The theoretically calculated preferred reaction pathway passing through an epoxide intermediate agrees nicely with the experimental proposal, providing a good example of where theoretical calculations can be of great help to definitively elucidate the reaction mechanism. Received: 10 July 2001 / Accepted: 20 December 2001 / Published online: 8 April 2002  相似文献   

17.
Scaling factors for obtaining fundamental vibrational frequencies from harmonic frequencies calculated at six of the most commonly used levels of theory have been determined from regression analysis for the polarized-valence triple-zeta (pVTZ) Sadlej electric property basis set. The Sadlej harmonic frequency scaling factors for first- and second-row molecules were derived from a comparison of a total of 900 individual vibrations for 111 molecules with available experimental frequencies. Overall, the best performers were the hybrid density functional theory (DFT) methods, Becke's three-parameter exchange functional with the Lee–Yang–Parr fit for the correlation functional (B3-LYP) and Becke's three-parameter exchange functional with Perdew and Wang's gradient-corrected correlation functional (B3-PW91). The uniform scaling factors for use with the Sadlej pVTZ basis set are 0.9066, 0.9946, 1.0047, 0.9726, 0.9674 and 0.9649 for Hartree–Fock, the Slater–Dirac exchange functional with the Vosko–Wilk–Nusair fit for the correlation functional (S-VWN), Becke's gradient-corrected exchange functional with the Lee–Yang–Parr fit for the correlation functional (B-LYP), B3-LYP, B3-PW91 and second-order M?ller–Plesset theory with frozen core (MP2(fc)), respectively. In addition to uniform frequency scaling factors, dual scaling factors were determined to improve the agreement between computed and observed frequencies. The scaling factors for the wavenumber regions below 1800 cm−1 and above 1800 cm−1 are 0.8981 and 0.9097, 1.0216 and 0.9857, 1.0352 and 0.9948, 0.9927 and 0.9659, 0.9873 and 0.9607, 0.9844 and 0.9584 for Hartree–Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2(fc), respectively. Hybrid DFT methods along with the Sadlej pVTZ basis set provides reliable theoretical vibrational spectra in a cost-effective manner. Received: 22 May 2000 / Accepted: 30 August 2000 / Published online: 28 February 2001  相似文献   

18.
The multiple-channel reactions OH + SiH(CH3)3 → products (R1) and the single-channel reaction OH + Si(CH3)4 → Si(CH3)3CH2 + H2O (R2) have been studied by means of the direct dynamics method at the BMC-CCSD//MP2/6-311+G(2d,2p) level. The optimized geometries, frequencies and minimum energy path are all obtained at the MP2/6-311+G(2d,2p) levels, and energy information is further refined by the BMC-CCSD (single-point) level. The rate constants for every reaction channels are calculated by canonical variational transition states theory (CVT) with small-curvature tunneling (SCT) contributions over the temperature range 200–2,000 K. The theoretical total rate constants are in good agreement with the available experimental data, and the three-parameter expression k 1 = 2.53×10−21 T 3.14 exp(1, 352.86/T), k 2 = 6.00 × 10−19 T 2.54 exp(−106.11/T) (in unit of cm3 molecule−1 s−1) over the temperature range 200–2,000 K are given. Our calculations indicate that at the low temperature range, for reaction R1, H-abstraction is favored for the SiH group, while the abstraction from the CH3 group is a minor channel. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The flexibility of the five-membered ring in tetrahydrofuran was investigated using quantum mechanical methods involving density functional, Hartree-Fock, and many-body perturbation theory (MP2, MP4) calculations. We found that motion along the pseudorotational path of tetrahydrofuran is nearly free. The 0.1 kcal/mol energy barrier for pseudorotation, calculated at the highest MP4(SDQ)/6-311++G(2d,p)//MP2/6-311++G(2d,p) level of theory, agrees well with the experimental value of 0.16±0.03 kcal/mol. Similar results were obtained with the S-VWN, B3-LYP and B-LYP density functional calculations using the 6-31G(d) set of atomic orbitals. Also the density functional dipole moments and geometries were in good agreement with both the MP2 and experimental benchmarks. However, all density functional methods that utilized the default integration grid in the Gaussian 94 program were found to provide false stationary points of the C 1 symmetry near the pseudorotational angle of 100°. These stationary points disappeared when a denser spherical-product grid was used. Overall, the hybrid B3-LYP functional was found to be the most promising quantum mechanical method for the modeling of biomolecules containing the furanose ring. Received: 17 June 1997 / Accepted: 20 November 1997  相似文献   

20.
The vibrational frequencies of several states of␣CaO2, ScO2, and TiO2 are computed using density functional theory (DFT), the Hartree-Fock approach, second-order M?ller-Plesset perturbation theory (MP2), and the complete-active-space self-consistent-field theory. Three different functionals are used in the DFT calculations, including two hybrid functionals. The coupled cluster singles and doubles approach including the effect of connected triples, determined using perturbation theory, is applied to selected states. The Becke-Perdew 86 functional appears to be the most cost-effective method of choice, although even this functional does not perform well for one state of CaO2. The MP2 approach is significantly inferior to the DFT approaches. Received: 3 September 1997 / Accepted: 8 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号