首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductivity, Seebeck coefficient, and Hall coefficient of three-micron-thick films of amorphous Ge2Sb2Te5 have been measured as functions of temperature from room temperature down to as low as 200 K. The electrical conductivity manifests an Arrhenius behavior. The Seebeck coefficient is p-type with behavior indicative of multi-band transport. The Hall mobility is n-type and low (near 0.07 cm2/V s at room temperature).  相似文献   

2.
Hall effect measurements in undoped In0.5Ga0.5 P/GaAs allo grown by metal organic vapour-phase epitaxy (MOVPE) have been carried out in the temperat.ure range 15-350K. The experimenta.1 results are analysed using a two-band model including conduction band transport calculated using an iterative solution of the Boltz- mann equation. A good agreement was obtained between theory and experiment. The impurity contents of In0.5Ga0.5 P/GaAs alloy, such as donor density ND, acceptor density NA and donor activation energy εD, were also determined.  相似文献   

3.
Resistivity and Hall effect measurements on n-type undoped Ga-rich InxGa1-xN (0.06 ≤ x ≤ 0.135) alloys grown by metal-organic vapour phase epitaxy (MOVPE) technique are carried out as a function of temperature (15-350 K). Within the experimental error, the electron concentration in Inx Ga1-x N alloys is independent of temperature while the resistivity decreases as the temperature increases. Therefore, Inx Ga1-xN (0.06 ≤ x ≤0.135) alloys are considered in the metallic phase near the Mort transition. It has been shown that the temperaturedependent metallic conductivity can be well explained by the Mort model that takes into account electron-electron interactions and weak localization effects.  相似文献   

4.
Electrical conductivity and Seebeck coefficient for the Bi2−xYxRu2O7 pyrochlores with x=0.0,0.5,1.0,1.5,2.0 were measured in the temperature range of 473-1073 K in air. With increasing Bi content, the temperature dependence of the electrical conductivity changed from semiconducting to metallic. The signs of the Seebeck coefficient were positive in the measured temperature range for all the samples, indicating that the major carriers were holes. The temperature dependence of the Seebeck coefficient for the Y2Ru2O7 indicated the thermal activation-type behavior of the holes, while that for the Bi2−xYxRu2O7 with x=0.0-1.5 indicated the itinerant behavior of the holes. The change in the conduction behavior from semiconductor to metal with increasing Bi content is consistent with the increase in the overlap between the Ru4d t2g and O2p orbitals, but the mixing of Bi6s, 6p states at EF may not be ruled out. The thermoelectric power factors for the Bi2−xYxRu2O7 with x=1.5 and 2.0 were lower than 10−5 W m−1 K−2 and those with x=0.0,0.5,1.0 were around 1-3×10−5 W m−1 K−2.  相似文献   

5.
M. Din 《Applied Surface Science》2006,252(15):5508-5511
Cadmium arsenide is a II-V semiconductor, exhibiting n-type intrinsic conductivity with high mobility and narrow bandgap. It is deposited by thermal evaporation, and has shown the Schottky and Poole-Frenkel effects at high electric fields, but requires further electrical characterisation. This has now been extended to low-field van der Pauw lateral resistivity measurements on films of thickness up to 1.5 μm. Resistivity was observed to decrease with increasing film thickness up to 0.5 μm from about 3 × 10−3 Ω m to 10−5 Ω m, where the crystalline granular size increases with film thickness. This decrease in resistivity was attributed to a decrease in grain boundary scattering and increased mobility. Substrate temperature during deposition also influenced the resistivity, which decreased from around 10−4 Ω m to (10−5 to 10−6) Ω m for an increase in substrate deposition temperature from 300 K to 423 K. This behaviour appears to result from varying grain sizes and ratios of crystalline to amorphous material. Resistivity decreased with deposition rate, reaching a minimum value at about 1.5 nm s−1, before slowly increasing again at higher rates. It was concluded that this resulted from a dependence of the film stoichiometry on deposition rate. The dependence of resistivity on temperature indicates that intercrystalline barriers dominate the conductivity at higher temperatures, with a hopping conduction process at low temperatures.  相似文献   

6.
Polycrystalline samples of (Ca1−xRx)3Co2O6 with R = Gd, Tb, Dy and Ho at x=0-0.1 were synthesized and the effects of rare earth substitution on their thermoelectric properties were investigated. In the high-temperature region, the rare earth substitution resulted in an increase in the Seebeck coefficients (S), and the S values increased with decreasing ionic radius of rare earth elements in the order Gd3+>Tb3+>Dy3+>Ho3+. In contrast, the influence of rare earth substitution on the electrical resistivity was small. The high-temperature power factor was thereby improved by the late rare earth substitutions, particularly those with Ho3+ for Ca2+. For the Ho-doped samples (x≤0.05), the power factor was significantly improved by increasing Ho concentration.  相似文献   

7.
Minority carrier lifetimes in nitrogen implanted GaAs1-x P x (x=0.4; 0.65) were measured at 77K by an optical phase shift method as a function of nitrogen dose and annealing temperature in order to investigate the dependence of the lifetime on the concentration of nitrogen isoelectronic traps. A large increase in the lifetime was observed after nitrogen implantation followed by annealing at and above 800°C. The maximum lifetimes were 22ns for GaAs0.35P0.65 and 6.7 ns for GaAs0.6P0.4. They were obtained by implantation to a dose of 5×1013 cm−2 in GaAs0.35P0.65 and 1013 cm−2 in GaAs0.6P0.4. The lifetime after nitrogen implantation followed by annealing was longer by a factor of 6–7 than that of the unimplanted sample.  相似文献   

8.
Magnetoresistances of SrFe2As2 and BaFe2As2 in the magnetic ordered state are studied. Positive magnetoresistance is observed in the magnetic fields H applied in the azimuthes of θta = 0°and 30° with respect to the c-axis. The magnetoresistance can reach 20% for SrFe2As2 and 12% for BaFe2As2 at H = 9 T with θ= 0°(H || c). Above the magnetic transition temperature, the magnetoresistance becomes negligible. The data in the magnetic ordered state could be described by a modified two-band galvanomagnetic model including the enhancement effect of the applied magnetic field on the spin-density-wave gap. The field enhanced spin-density-wave gaps for different types of carriers are different. Temperature dependencies of the fitting parameters are discussed.  相似文献   

9.
The Hall resistivity and magnetization have been investigated in the ferromagnetic state of the bilayered manganite La2−2xSr1+2xMn2O7 (x=0.36). The Hall resistivity shows an increase in both the ordinary and anomalous Hall coefficients at low temperatures below 50 K, a region in which experimental evidence for the spin glass state has been found in a low magnetic field of 1 mT. The origin of the anomalous behavior of the Hall resistivity relevant to magnetic states may lie in the intrinsic microscopic inhomogeneity in a quasi-two-dimensional electron system.  相似文献   

10.
We report the results of a room-temperature investigation of the thermoelectric and the dilatometric properties of a heavy fermion system YbPd2Si2 (itterbium-palladium-silicon, 1-2-2) at high pressure P up to 22 GPa; YbPd2Si2 is a less-studied representative of the RM2X2 family (R=Ce, Yb, U; M=transition metal; X=Si, Ge) with the tetragonal ThCr2Si2-type structure of the I4/mmm space group. Around P∼6±0.5 GPa, a phase transition in Yb-Pd-Si was registered by the drastic changes in the pressure dependencies of the electrical resistance R, the thermopower (Seebeck effect) S, a temperature difference along a sample ΔT, and a sample's thickness Δx (related to compressibility). Both a nature of the found phase transition and a presumable P-T phase diagram of YbPd2Si2 are discussed.  相似文献   

11.
Hangdong Wang 《Physics letters. A》2009,373(44):4092-4095
In this Letter, the single crystals of Ba5Co5ClO13 were grown by the flux method successfully. Their structure, magnetic and transport properties were studied. A large anisotropy of the magnetic and transport properties has been detected in this compound. Below the TN∼108 K, the magnetic susceptibility exhibits an antiferromagnetic peak in χc and an upturn transition in χab. We suggest that this behavior is consistent with the competition of the ferromagnetic (FM) intra-blocks coupling and antiferromagnetic (AFM) inter-blocks coupling in this compound. The temperature dependence of the resistivity displays a hump in ρab and a kink in ρc around TN, suggesting the strong coupling between the transport and magnetic properties. Above and below the transition, the transport properties in ab plane follow the three-dimensional (3D) variable range hopping (VRH) mechanism.  相似文献   

12.
13.
The structure, transport and magnetic properties of (La0.8Sr0.2)1−xMnO3 (0≤x≤0.30) polycrystalline perovskite manganites have been investigated. For all the samples the Curie temperatures, Tc, remain nearly unchanged (329±3 K). Resistivity versus temperature curves for the samples show a double-peak behavior. A significant magnetoresistance (MR) effect and different temperature dependences of the MR ratios of the samples are observed. The shapes of the MR-T curves of the samples can be adjusted by changing x. For the x=0.30 sample, a nearly constant MR ratio of (9.5±0.5)% is obtained over the temperature range from 205 to 328 K.  相似文献   

14.
Magnetoquantum oscillations of the Hall coefficient RH were observed in Te-doped GaSb layers grown by molecular beam epitaxy. The free electron densities were in the low 1016 cm−3 range or even slightly lower, thus achieving, for the first time in GaSb, the extreme quantum limit, where all the electrons occupy the spin-split 0(+) Landau level (LL). Similarly to other known cases, the amplitude of the last maximum of RH could be explained as enhanced by the metal-to-insulator transition of the spin-down electron system in the n=0 LL. The occurrence of the last negative oscillation of RH below its classical value, called Hall dip, could be frustrated, in samples with sufficiently low carrier densities, by an incipient carrier freeze-out at donor impurities induced by the magnetic field.  相似文献   

15.
Temperature (4.2–260 K) and magnetic field (0–50 kOe) dependencies of the DC electrical resistance, DC magnetization, and AC magnetic susceptibility of (Sm0.65Sr0.35)MnO3 prepared from high purity components have been studied. (Sm0.65Sr0.35)MnO3 undergoes a temperature-induced transition between low-temperature ferromagnetic metallic and high-temperature paramagnetic insulating-like states. A magnetic field strongly affects this transition resulting in a metallic state and “colossal” magnetoresistance in the vicinity of the metal↔insulator transition. Magnetic and electric properties of (Sm0.65Sr0.35)MnO3 are different compared to those reported earlier for similar composition, which is attributable to the purity of the starting materials and/or different process of synthesis. The character of phase transformations observed in (Sm0.65Sr0.35)MnO3 is compared to that reported for Gd5(SixGe4−x) intermetallic alloys with a true first order phase transition.  相似文献   

16.
Tl2InGaS4 layered crystals are studied through the dark electrical conductivity, space charge limited current and illumination- and temperature-dependent photoconductivity measurements in the temperature regions of 220-350 K, 300-400 K and 200-350 K, respectively. The space charge limited current measurements revealed the existence of a single discrete trapping level located at 0.44 eV. The dark electrical conductivity showed the existence of two energy levels of 0.32 eV and 0.60 eV being dominant above and below 300 K, respectively. The photoconductivity measurements reflected the existence of two other energy levels located at 0.28 eV and 0.19 eV at high and low temperatures, respectively. The photocurrent is observed to increase with increasing temperature up to a maximum temperature of 330 K. The illumination dependence of photoconductivity is found to exhibit supralinear recombination in all the studied temperature ranges. The change in recombination mechanism is attributed to exchange in the behavior of sensitizing and recombination centers.  相似文献   

17.
The metal-insulator (MI) transition induced by a magnetic field was evidenced for the first time in compensated n-type GaSb layers grown by molecular beam epitaxy. The free electron densities were in the low 1016 cm−3 range or even slightly lower, so that the zero-field 3D electron gas was degenerate and, at the BMI magnetic field of the MI transition, it populates only the spin-split 0(+) Landau level (extreme quantum limit). On the metallic side of the MI transition a T1/3 dependence of the conductivity was assumed to fit the low-T data and to estimate the BMI value, which resulted of 9.1 T in the purest sample. The MI transition manifests in a strong increase of the diagonal resistivity with the magnetic field, but not of the Hall coefficient, suggesting that the apparent electron density is practically constant, whereas the mobility varies strongly. The evidence of a maximum in the temperature dependence of the Hall coefficient has been explained through a two channels transport mechanism involving localized and extended states.  相似文献   

18.
Perovskite-type LaFe1-xCuxO3 (x=0.10$, 0.14, 0.18) solid solution is prepared with the conventional solid-state reaction technique. The electrical resistivity and the Seebeck coefficient are measured in the temperature range 473-1073K to elucidate the Cu doping effect on the thermoelectric properties of the LaFeO3. The electrical resisitivity of LaFe1-xCuxO3 shows semiconducting behavior. The temperature dependence of the electrical resistivity indicates that the adiabatic small-polaron hopping mechanism is dominant for their electric transportations. The activation energy decreases with the increasing Cu content as well as the increasing temperature. The Seebeck coefficient changes from a negative value to a positive value around 510K, and increases with rising temperature up to 710K, then becomes saturated around 200μV/K. The Seebeck coefficient decreases with the substitution of Cu atoms in the temperature range of 573-1073K, while the electrical resistivity decreases with the substitution of Cu atoms in the whole measured temperature. Overall the power factor increases with rising temperature, and the highest value of power factor is 54μW/K2m for x=0.10 of Cu doping.  相似文献   

19.
Photoconductivity and Hall voltage kinetics were measured simultaneously in SI GaAs monocrystals, using the pulsed neodimium laser excitation. The scattering and recombination centres were found to have a different influence at different time intervals of the transients (from 10 ns to some seconds). It is shown that in GaAs the photoconductivity relaxation in some time intervals can be interpreted correctly only by taking into account the mobility changes. The obtained resuls are explained in terms of recharging of the scattering centres and variations of the capture cross-section of charge carries on the local centres.  相似文献   

20.
We report the investigation of the Photo-Magneto-Electric effect (PME) in semi-insulating Liquid-Encapsulated (LEC-) grown GaAs crystals, using both intrinsic and impurity excitation. The role of the majority and minority carriers on the conductivity phenomena was evaluated and the lifetimes of electrons and holes were determined depending on excitation conditions. Anomalously high PME voltages, reaching in some cases some volts, were measured, which demonstrate a sharp drop in the temperature region 320–360K. The observed changes are discussed supposing that the influence of the non-homogeneous defect structure of the samples is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号