首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dipolar filters are of considerable importance for eliminating the 1H NMR signal of the rigid components of heterogeneous compounds while selecting the signal of their mobile parts. On the basis of such filters, structural and dynamical information of these compounds can often be acquired through further manipulations (e.g. spin diffusion) on the spin systems. To overcome the destructive interferences between the magic angle spinning (MAS) speed and the cycle-time of the widely-used Rotor-Asynchronized Dipolar Filter (RADF) sequence, we introduce a new method called Rotor-Synchronized Dipolar Filter (RSDF). This communication shows that this sequence does not present any interference with the spinning speed and is more compatible than RADF with high MAS frequencies (νR > 12 kHz). This new pulse sequence will potentially contribute to future researches on heterogeneous materials, such as multiphase polymer and membrane systems.  相似文献   

2.
Two-dimensional triple-quantum (2D-3Q) 23Na MAS NMR spectroscopy has been applied for the investigation of sodium cations in dehydrated zeolites NaY, NaEMT, NaZSM-5 and NaMOR. The experiments have shown that the new 2D-3Q technique allows the determination of the isotropic chemical shifts and quadrupolar couplings of sodium cations with SOQE (second-order quadrupolar effect) parameters of up to ca. 4 MHz. In the present work, SOQE parameters of 1.0–1.2 MHz were found for sodium cations located at positions SI in the hexagonal prisms of dehydrated zeolites NaY and NaEMT. The sodium cations located in the 10-ring and 12-ring channels of dehydrated zeolites NaZSM-5 and NaMOR, respectively, are characterized by a SOQE parameter of 2.0 MHz while a value of 3.1 MHz was determined for sodium cations in the sidepockets of the channels in dehydrated NaMOR.  相似文献   

3.
The potential of heteronuclear MAS NMR spectroscopy for the characterization of 15N chemical shift (CS) tensors in multiply labeled systems has been illustrated, in one of the first studies of this type, by a measurement of the chemical shift tensor magnitude and orientation in the molecular frame for the two 15N sites of uracil. Employing polycrystalline samples of 15N2 and 2-13C,15N2-labeled uracil, we have measured, via 15N–13C REDOR and 15N–1H dipolar-shift experiments, the polar and azimuthal angles (θ, ψ) of orientation of the 15N–13C and 15N–1H dipolar vectors in the 15N CS tensor frame. The (θNC, ψNC) angles are determined to be (92 ± 10°, 100 ± 5°) and (132 ± 3°, 88 ± 10°) for the N1 and N3 sites, respectively. Similarly, (θNH, ψNH) are found to be (15 ± 5°, −80 ± 10°) and (15 ± 5°, 90 ± 10°) for the N1 and N3 sites, respectively. These results obtained based only on MAS NMR measurements have been compared with the data reported in the literature.  相似文献   

4.
We present a new smooth amplitude-modulated (SAM) method that allows to observe highly resolved 1H spectra in solid-state NMR. The method, which works mainly at fast or ultra-fast MAS speed (νR > 25 kHz) is complementary to previous methods, such as DUMBO, FSLG/PMLG or symmetry-based sequences. The method is very robust and efficient and does not present line-shape distortions or fake peaks. The main limitation of the method is that it requires a modern console with fast electronics that must be able to define the cosine line-shape in a smooth way, without any transient. However, this limitation mainly occurs at ultra-fast MAS where the rotation period is very short.  相似文献   

5.
The merits of SPAM and FAM pulses for enhancing the conversion of triple- to single-quantum coherences in the two-dimensional MQMAS experiment are compared using (87)Rb (spin I=3/2) and (27)Al (I=5/2) NMR of crystalline and amorphous materials. Although SPAM pulses are more easily optimized, our experiments and simulations suggest that FAM pulses yield greater signal intensity in all cases. In conclusion, we argue that, as originally suggested, SPAM and FAM pulses are best implemented in phase-modulated whole-echo MQMAS experiments and that the use of SPAM pulses to record separate echo and antiecho data sets, which are then combined, generally yields lower signal-to-noise ratios.  相似文献   

6.
Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D(2)O:H(2)O=9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken alpha-spectrin as a model system. The labeling scheme allows to record proton detected (1)H, (15)N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the (1)H T(1) for the bulk H(N) magnetization is reduced from 4.4s to 0.3s if the Cu-edta concentration is increased from 0mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments.  相似文献   

7.
We propose a new broadband second-order proton-assisted 13C–13C correlation experiment, SHANGHAI. The 13C–13C magnetization transfer is promoted by 1H irradiation with interspersed four phases super-cycling. This through-space homo-nuclear sequence only irradiates on the proton channel during the mixing time. SHANGHAI benefits from a large number of modulation sidebands, hence leading to a large robustness with respect to chemical shift differences, which permits its use in a broad MAS frequency range. At ultra-fast MAS (νR ? 60 kHz), SHANGHAI is only efficient when the amplitude of 1H recoupling rf-field is close to half the spinning speed (ν1νR/2). However, at moderate to fast MAS (νR = 20–35 kHz), SHANGHAI is efficient at any rf-power level larger than ν1 ≈ 10 kHz, which simultaneously permits avoiding excessive heating of bio-molecules, and using large sample volumes. We show that SHANGHAI can be employed at the very high magnetic field of 23.5 T and then allows the observation of correlation between 13C nuclei, even if their resonance frequencies differ by more than 38 kHz.  相似文献   

8.
Dipolar dephasing of the magnetization following a Hahn spin echo pulse sequence potentially provides a quantitative means for determining the dipolar second moment in solids. In this work, the possibility of employing Hahn spin echo decay spectroscopy to obtain quantitative 51V–51V dipolar second moments is explored. Theoretical spin echo response curves are compared to experimental ones for a collection of crystalline vanadium-containing compounds. This work suggests that 51V dipolar second moments can be obtained by selectively exciting the central m = 1/2 → −1/2 by a Hahn echo sequence for vanadate compounds with line broadening no greater than approximately 220 ppm. For vanadates with greater broadening of the central transition due to chemical shift, second-order quadrupolar, and dipolar interactions, off-resonance effects lead to an oscillatory time dependence of the spin echo. Experimentally determined second moments of the normalized echo decay intensities lie within 10–33% of the calculated values if the second moments are extrapolated to zero evolution time due to the time scale dependence of spin exchange among neighboring vanadium nuclei. Alternatively, the second moments can be obtained to within 10–25% of the calculated values if the broadening of the central transition due to chemical shift and second-order quadrupolar effects can be estimated.  相似文献   

9.
Localized cerebral in vivo 1H NMR spectroscopy (MRS) was performed in the anesthetized as well as the awake monkey using a novel vertical 7 T/60 cm MR system. The increased sensitivity and spectral dispersion gained at high field enabled the quantification of up to 16 metabolites in 0.1- to 1-ml volumes. Quantification was accomplished by using simulations of 18 metabolite spectra and a macromolecule (MM) background spectrum consisting of 12 components. Major cerebral metabolites (concentrations >3 mM) such as glutamate (Glu), N-acetylaspartate (NAA), creatine (Cr)/phosphocreatine (PCr) and myo-inositol (Ins) were identified with an error below 3%; most other metabolites were quantified with errors in the order of 10%. Metabolite ratios were 1.39:1 for total NAA, 1.38:1 for glutamate (Glu)/glutamine (Gln) and 0.09:1 for cholines (Cho) relative to total Cr. Taurine (Tau) was detectable at concentrations lower than 1 mM, while lactate (Lac) remained below the detection limit. The spectral dispersion was sufficient to separate metabolites of similar spectral patterns, such as Gln and Glu, N-acetylaspartylglutamate (NAAG) and NAA, and PCr–Cr. MRS in the awake monkey required the development and refinement of acquisition and correction strategies to minimize magnetic susceptibility artifacts induced by respiration and movement of the mouth or body. Periods with major motion artifacts were rejected, while a frequency/phase correction was performed on the remaining single spectra before averaging. In resting periods, both spectral amplitude and line width, that is, the voxel shim, were unaffected permitting reliable measurements. The corrected spectra obtained from the awake monkey afforded the reliable detection of 6–10 cerebral metabolites of 1-ml volumes.  相似文献   

10.
Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance (13)C and (14)N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio-frequency heating effects are presented. Sensitivity of (13)C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL, and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using (14)N experiments on bicelles is also discussed.  相似文献   

11.
High-temperature 23Na MAS NMR experiments up to 873 K for a number of different sodalites (Na8[AlSiO4]6(NO3)2, Na8[AlSiO4]6(NO2)2, Na8[AlSiO4]6I2, Na7.9[AlSiO4]6(SCN)7.9 · 0.5H2O, Na8[AlGeO4]6(NO3)2, and Na7[AlSiO4]6(H3O2) · 4H2O) were carried out. The spectra of the first five sodalites consist of a quadrupolar MAS pattern with different quadrupolar coupling constants. The quadrupolar interaction for the thiocyanate sodalite, the nitrate aluminosilicate, and germanate sodalite decreases strongly passing a coalescence state on heating, while the quadrupolar interaction of the iodide and nitrite sample shows nearly no change. The basic hydrosodalite shows an asymmetric lineshape at room temperature and, between 350 and 370 K, a second line due to the evaporation of cage-water emerges. The linewidth increases with rising temperature. The temperature dependence of the quadrupolar interaction seems to be a function of the sodalite β-cage expansion. Two conceivable jump mechanisms are proposed for a tetrahedral two-site jump between occupied and unoccupied tetrahedral sites.  相似文献   

12.
Occlusion of sodium chloride and sodium bromide in zeolitic pores was performed by heating mixtures of the salts with zeolites NaY and NaA under high vacuum conditions. The obtained samples were subjected to various further pretreatments like washing with water and zinc-exchange, and were investigated spectroscopically with the 23Na MAS NMR technique at various Zeeman field strengths. In the case of NaY, the halides are occluded in both types of cages of the faujasite structure. About 90% of the sodalite cages are shown to have incorporated salt which is concluded to be part of [Na4Hal]3+ clusters as in the case of sodalite type materials.  相似文献   

13.
The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state (33)S (spin I=3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH(4))(2)WS(4) and (NH(4))(2)MoS(4). These materials all exhibit (33)S quadrupole coupling constants (C(Q)) in the range 0.1-1.0 MHz, with precise C(Q) values being determined from analysis of the PT enhanced (33)S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I=3/2 nuclei with similar C(Q) values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance (33)S MAS NMR, a time saving which is extremely welcome for this important low-gamma nucleus.  相似文献   

14.
15.
A High-resolution two-dimensional (2D) (1)H double-quantum (DQ) homonuclear recoupling experiments, combined with smooth amplitude-modulation (SAM) homonuclear decoupling is presented. The experiment affords highly resolved and clean (1)H DQ-SQ 2D spectra at very-fast MAS rates (nu(R)=35 kHz). The method is well suited to probe (1)H-(1)H distances in powdered solids and demonstrations are applied on a NaH(2)PO(4) powdered sample, an inorganic compound having hydrogen bonding networks.  相似文献   

16.
27Al MAS NMR has been used to study a sol–gel prepared alumina annealed at various temperatures. Two-field simulation of the sample heated to 1200 °C confirmed the presence of corundum, as suggested by XRD, and also the presence of nanocrystalline θ-Al2O3. 27Al MAS NMR chemical shifts, quadrupolar coupling constants and asymmetry parameters are reported for the tetrahedral and octahedral aluminium sites within θ-Al2O3.  相似文献   

17.
Structural disorder at the scale of two to three atomic positions around the probe nucleus results in variations of the EFG and thus in a distribution of the quadrupolar interaction. This distribution is at the origin of the lineshape tailing toward high fields which is often observed in the MAS NMR spectra of quadrupolar nuclei in disordered solids. The Czjzek model provides an analytical expression for the joint distribution of the NMR quadrupolar parameters upsilon(Q) and eta from which a lineshape can be predicted. This model is derived from the Central Limit Theorem and the statistical isotropy inherent to disorder. It is thus applicable to a wide range of materials as we have illustrated for 27Al spectra on selected examples of glasses (slag), spinels (alumina), and hydrates (cement aluminum hydrates). In particular, when relevant, the use of the Czjzek model allows a quantitative decomposition of the spectra and an accurate extraction of the second moment of the quadrupolar product. In this respect, it is important to realize that only rotational invariants such as the quadrupolar product can make sense to describe the quadrupolar interaction in disordered solids.  相似文献   

18.
Two-dimensional (1)H-(13)C INEPT MAS NMR experiments utilizing a (1)H-(1)H magnetization exchange mixing period are presented for characterization of lipid systems. The introduction of the exchange period allows for structural information to be obtained via (1)H-(1)H dipolar couplings but with (13)C chemical shift resolution. It is shown that utilizing a RFDR recoupling sequence with short mixing times in place of the more standard NOE cross-relaxation for magnetization exchange during the mixing period allowed for the identification and separation of close (1)H-(1)H dipolar contacts versus longer-range inter-molecular (1)H-(1)H dipolar cross-relaxation. These 2D INEPT experiments were used to address both intra- and inter-molecular contacts in lipid and lipid/cholesterol mixtures.  相似文献   

19.
Zero-quantum coherence generation and reconversion in magic-angle spinning solid-state NMR is analyzed. Two methods are discussed based on implementations using symmetry-based pulse sequences that utilize either isotropic J couplings or dipolar couplings. In either case, the decoupling of abundant proton spins plays a crucial role for the efficiency of the zero-quantum generation. We present optimized sequences for measuring zero-quantum single-quantum correlation spectra in solids, achieving an efficiency of 50% in ubiquitin. The advantages and disadvantages of zero-quantum single-quantum over single-quantum single-quantum correlation spectroscopy are explored, and similarities and differences with double-quantum single-quantum correlation spectroscopy are discussed. Finally, possible application of zero-quantum single-quantum experiments to polypeptides, where it can lead to better spectral resolution is investigated using ubiquitin, where we find high efficiency and high selectivity, but also increased line widths in the MQ dimension.  相似文献   

20.
The question of the homogeneous broadening that occurs in 2D solid-state NMR experiments is examined. This homogeneous broadening is mathematically introduced in a simple way, versus the irreversible decay rates related to the coherences that are involved during t1 and t2. We give the pulse sequences and coherence transfer pathways that are used to measure these decay rates. On AlPO4 berlinite, we have measured the 27Al echo-type relaxation times of the central and satellite transitions on 1Q levels, so that of coherences that are situated on 2Q, 3Q, and 5Q levels. We compare the broadenings that can be deduced from these relaxation times to those directly observed on the isotropic projection of berlinite with multiple-quantum magic-angle spinning (MAS), or satellite-transition MAS. We show that the choice of the high-resolution method, should be done according to the spin value and the corresponding homogeneous broadening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号