首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleophilic substitution reactions of N(3)P(3)Cl(4)[NH(CH(2))(3)NMe] (1) and N(3)P(3)Cl(4)[NH(CH(2))(3)O] (2) with mono-functional alcohols (methanol, 2,2,2-trifluoroethanol, phenol) and a secondary amine (pyrrolidine) were used to investigate the relationship between the incoming nucleophile and the proportions of products with substituents that are cis or trans to the spiro NH moiety. The reaction products were characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy and the configurational isomers by X-ray crystallography. Six products have been characterised with the substituent cis to the spiro NH group for the alcohol (methanol, phenol) and pyrrolidine derivatives of both compounds 1 and 2, compared to just one derivative with the substituent trans to the spiro NH group, that for the pyrrolidine derivative of compound 2. For each reaction the relative proportions of cis and trans isomers were determined by (31)P NMR measurements of the reaction mixtures. It was found that the reactions of compound 1 with all three alcohols and of compound 2 with methanol lead to exclusive formation of isomers with the substituent cis to the NH moiety, whereas all other reactions lead to mixtures of cis and trans isomers in different ratios under standard reaction conditions. However, when crown ether is included in the reaction medium for the reactions of compound 2 with both 2,2,2-trifluoroethanol and phenol, it is found that only cis isomers are formed. All these results are rationalised in terms of the competition between at least two effects; the cis-directing effect by hydrogen bonding of the incoming nucleophile to the spiro N-H group already present on the cyclophophazene ring and the cis-directing effect of the sodium cation coordinating to the oxygen lone pairs of the P-O moiety of the spiro ring.  相似文献   

2.
Nucleophilic substitution reactions of cyclotriphosphazene derivatives having five-membered spiro rings, N(3)P(3)Cl(4)[O(CH(2))(2)X] (X = NH or O) with alkoxides (of tetraethylene glycol and some mono-functional alcohols) give unexpected rearrangements to form stable seven-membered ring ansa compounds, even though crystallographic evidence shows ring distortion and compression of the cyclophosphazene ring. With weaker nucleophiles such as sodium phenoxide and pyrrolidine substitution at a PCl2 group is preferred and no rearrangement takes place. In contrast, reactions of the analogous phosphazenes containing six-membered spiro rings, N(3)P(3)Cl(4)[O(CH(2))(3)X], with all of the above reagents give only normal substitution reactions at the PCl2 moieties and no rearrangement products. The spiro to ansa rearrangements in cyclophosphazenes are remarkable as the reported primary reaction products with the same difunctional reagents HO(CH(2))(2)XH are predominantly spiro, with some dangling and bridging derivatives, but no ansa compounds.  相似文献   

3.
Cyclotriphosphazene derivatives containing a P-NHR group in the side-chain react in the presence of a strong base to form stable intermolecular bridged products. Reaction of sodium hydride with mono-spiro cyclophosphazene derivatives having a P-NH group, N(3)P(3)Cl(4)[O(CH(2))(3)NH], (1a) or N(3)P(3)Cl(4)[CH(3)N(CH(2))(3)NH], (1b) leads to formation of bis-cyclophosphazenes bridged with an eight-membered cyclophosphazene ring in an ansa arrangement (2a, 2b) whereas reaction of sodium hydride with mono-amino cyclophosphazene derivatives [N(3)P(3)Cl(5)(NHR), R = n-hexyl, 3a; i-Pr, 3b; Ph, 3c] give bis-cyclophosphazenes bridged with a four-membered cyclophosphazane ring in a spiro arrangement (4a-c). In the latter reaction P-O-P bridged compounds (5a-c) were also obtained as a result of hydrolysis reactions associated with the amount of moisture in the solvent tetrahydrofuran. In addition, it was found that reaction of a mixture of cyclotriphosphazene with either mono spiro compound, (1a) or (1b), in the presence of sodium hydride lead to formation of the first examples of asymmetrically-bridged cyclophosphazenes (6a-b).  相似文献   

4.
The reactions of cis-[Pt(2)(4-MeC(6)H(4))(4)(μ-SEt(2))(2)] with bifunctional ligands ArCH=NCH(2)(2-XC(6)H(4)) containing a C-X bond at the ortho positions of the benzyl ring (Ar = 4-ClC(6)H(4), X = Br (1d); Ar = 2,4,6-(CH(3))(3)C(6)H(2), X = Br (1e); Ar = 2,4,6-(CH(3))(3)C(6)H(2), X = Cl (1f); Ar = 2-CH(3)C(6)H(4), X = Br (1h); Ar = 2,6-F(2)C(6)H(3), X = Br (1i)) in refluxing toluene were studied. Several types of platinum(II) cyclometallated compounds containing a biaryl linkage were obtained: i) endo-five-membered with a Pt-C(sp(2)) bond (2d, 2h), ii) endo-six-membered with a Pt-C(sp(3)) bond (2e, 2f), and iii) exo-five membered with a Pt-C(sp(2)) bond (2i). The formed biaryl linkage involves the metallated ring for 2i and the non-metallated ring for the endo-metallacycles. The reaction of compounds 2 with PPh(3) produced the corresponding phosphine derivatives, some of which (3d, 3e, 3h and 3i) were characterised crystallographically. In addition, compound [PtBr{2-CH(3)C(6)H(3)C(6)H(4)CH=NCH(2)(2-C(6)H(4)Br)}SEt(2)] (2c) containing a seven-membered endo-metallacycle was also obtained and characterised crystallographically.  相似文献   

5.
New alpha,alpha-difluoroamides (4a-d, 6a-d) and alpha-ketoamides (5a-d, 7a-d) result from one-pot reactions of alpha-ketoacids, RCOCO(2)H (R = C(6)H(5), CH(3), CH(3)CH(2), thienyl) (1a-d) with bis(2-methoxyethyl)aminosulfur trifluoride [(CH(3)OCH(2)CH(2))(2)NSF(3)] (2) (Deoxofluor) or diethylaminosulfur trifluoride [(CH(3)CH(2))(2)NSF(3))] (3) (DAST). Product yields depend on reaction times and the ratio of reagents used. Longer reaction times ( approximately 36 h) with a 1:2 ratio of alpha-ketoacids and 2 or 3 gave major yields of the alpha,alpha-difluoroamides, and shorter reaction times ( approximately l h) produced alpha-ketoamides as the major products. Reactants in a 1:1 ratio resulted in alpha-ketoamides only.  相似文献   

6.
A series of new diiron azadithiolate (ADT) complexes (1-8), which could be regarded as the active site models of [FeFe]hydrogenases, have been synthesized starting from parent complex [(μ-SCH(2))(2)NCH(2)CH(2)OH]Fe(2)(CO)(6) (A). Treatment of A with ethyl malonyl chloride or malonyl dichloride in the presence of pyridine afforded the malonyl-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(6) (1) and [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (2). Further treatment of 1 and 2 with PPh(3) under different conditions produced the PPh(3)-substituted complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (3), [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(4)(PPh(3))(2) (4), and [Fe(2)(CO)(5)(PPh(3))(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (5). More interestingly, complexes 1-3 could react with C(60) in the presence of CBr(4) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) via Bingel-Hirsch reaction to give the C(60)-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(6) (6), [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)C(C(60)) (7), and [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (8). The new ADT-type models 1-8 were characterized by elemental analysis and spectroscopy, whereas 2-4 were further studied by X-ray crystallography and 6-8 investigated in detail by DFT methods.  相似文献   

7.
The Wittig reaction of (1-adamantylmethylidene)triphenylphosphorane (Ph(3)P=CH(1-Ad)) with benzaldehyde was investigated, and the results were compared with those of other ylides. The substituent effect in the reaction of the ylide with benzaldehydes was determined by competition experiments, which gave a Hammett rho value of 3.2. The rho value is much larger than those reported for analogous reactions of Ph(3)P=CH(CH(2))(2)CH(3) (rho = 0.20) and Ph(3)P=CH(CH(3))(2) (rho = 0.59), indicating that the reaction mechanism differs for Ph(3)P=CH(1-Ad) and the other ylides. The cis/trans ratio of the product alkene is 74/26 for the reaction with the parent benzaldehyde and highly depends on the position of the substituent; ortho substituted benzaldehydes gave the trans alkenes up to 90%. Monitoring the reaction by means of (31)P NMR revealed that both cis and trans oxaphosphetane intermediates were formed and that the formation and decomposition of the cis oxaphosphetane are 7-12 times faster than those of the trans oxaphosphetane. From the comparison of the reaction of Ph(3)P=CH(1-Ad) + benzaldehyde with those of Ph(3)P=CH(CH(2))(2)CH(3) + benzaldehyde and benzophenone, and Ph(3)P=CH(CH(3))(2) + benzophenone, it was concluded that all the reactions with these nonstabilized ylides proceed via an electron-transfer mechanism and that the rate-determining step changes from the electron transfer step to that of radical combination when the substrate or ylide becomes more sterically demanding.  相似文献   

8.
Reactions of the model acylium ion (CH3)2N-C(+)=O with acyclic, exocyclic, and spiro acetals of the general formula R(1)O-CR(3)R(4)-OR(2) were systematically evaluated via pentaquadrupole mass spectrometry. Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most common reactions observed were hydride and alkoxy anion [R(1)O(-) and R(2)O(-)] abstraction. Other specific reactions were also observed: (a) a secondary polar [4(+) + 2] cycloaddition for acetals bearing alpha,beta-unsaturated R(3) or R(4) substituents and (b) OH(-) abstraction for exocyclic and spiro acetals. These structurally diagnostic reactions, in conjunction with others observed previously for cyclic acetals, are shown to reveal the class of the acetal molecule and its ring type and substituents and to permit their recognition and distinction from other classes of isomeric molecules.  相似文献   

9.
Cleavage of the Se-Se bond in [2-{O(CH(2)CH(2))(2)NCH(2)}C(6)H(4)](2)Se(2) (1) and [2-{MeN(CH(2)CH(2))(2)NCH(2)}C(6)H(4)](2)Se(2) (2) by treatment with SO(2)Cl(2), bromine or iodine (1 : 1 molar ratio) yielded [2-{O(CH(2)CH(2))(2)NCH(2)}C(6)H(4)]SeX [X = Cl (3), Br (4), I (5)] and [2-{MeN(CH(2)CH(2))(2)NCH(2)}C(6)H(4)]SeI (6). The compounds were characterized in solution by NMR spectroscopy (1H, 13C, 15N, 77Se, 2D experiments). The solid-state molecular structures of 1-3, 4.HBr, 5 and 6 were established by single crystal X-ray diffraction. In all cases T-shaped coordination geometries, i.e. (C,N)SeSe (1, 2), (C,N)SeX (3, 5, 6; X = halogen) or CSeBr(2) (4.HBr), were found. Supramolecular associations in crystals based on hydrogen contacts are discussed.  相似文献   

10.
The simultaneous action of the tridentate ligand (C(2)H(5))(2)NCH(2)CH(2)N(CH(2)CH(2)SH)(2) and the monodentate coligand HSC(6)H(4)OCH(3) on a suitable ReO(3+) precursor results in a mixture of syn- and anti-oxorhenium complexes, ReO[(C(2)H(5))(2)NCH(2)CH(2)N(CH(2)CH(2)S)(2)] [SC(6)H(4)OCH(3)], in a ratio of 25/1. The complexes are prepared by a ligand exchange reaction using ReO(eg)(2) (eg = ethylene glycol), ReOCl(3)(PPh(3))(2), or Re(V)-citrate as precursor. Both complexes have been characterized by elemental analysis, FT-IR, UV-vis, X-ray crystallography, and NMR spectroscopy. The syn isomer C(17)H(29)N(2)O(2)S(3)Re crystallizes in the monoclinic space group P2(1)/n, a = 14.109(4) ?, b = 7.518(2) ?, c = 20.900(5) ?, beta = 103.07(1) degrees, V = 2159.4(9) ?(3), Z = 4. The anti isomer C(17)H(29)N(2)O(2)S(3)Re crystallizes in P2(1)/n, a = 9.3850(7) ?, b = 27.979(2) ?, c = 8.3648(6) ?, beta = 99.86(1) degrees, V = 2163.9(3) ?(3), Z = 4. Complete NMR studies show that the orientation of the N substituent chain with respect to the Re=O core greatly influences the observed chemical shifts. Complexes were also prepared at the tracer ((186)Re) level by using (186)Re-citrate as precursor. Corroboration of the structure at tracer level was achieved by comparative HPLC studies.  相似文献   

11.
Bridge splitting in chloroform of the orthometalated chloro-bridged complex [Pt(micro-Cl)(2-Me(2)NCH(2)C(6)H(4))](2)(1), with ethene, cyclooctene, allyl alcohol and phosphine according to 1+ 2L --> 2[PtCl(2-Me(2)NCH(2)C(6)H(4))(L)], where L = C(2)H(4)(3a), C(8)H(14), (3b), CH(2)CHCH(2)OH (3c), and PPh(3)(4a and 4b) gives monomeric species with L coordinated trans or cis to aryl. With olefins the thermodynamically stable isomer with L coordinated cis to aryl is formed directly without an observable intermediate. With phosphine and pyridine, the kinetically controlled trans-product isomerizes slowly to the more stable cis-isomer. Bridge splitting by olefins is slow and first-order in 1 and L, with largely negative DeltaS(++). Substitution of ethene cis to aryl by cyclooctene and allyl alcohol to form 3b and 3c, and substitution of cot from 3b by allyl alcohol to form 3c are first order in olefin and complex, ca. six orders of magnitude faster than bridge cleavage due to a large decrease in DeltaH(++), and with largely negative DeltaS(++). Cyclooctene exchange at 3b is first-order with respect to free cyclooctene and platinum complex. All experimental data for olefin substitution and exchange are compatible with a concerted substitution/isomerization process via a turnstile twist pseudo-rotation in a short-lived labile five-coordinated intermediate, involving initial attack on the labile coordination position trans to the sigma-bonded aryl. Bridge-cleavage reactions of the analogous bridged complexes occur similarly, but are much slower because of their ground-state stabilization and steric hindrance.  相似文献   

12.
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2)(2-Ti) was prepared by treatment of Ti(OPr(i)(4)) with the new amino-bis(phenol) Me(2)NCH(2)CH(2)N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)OH-2](2)(2-H(2)). The reduction of 2-Ti with sodium amalgam gave the titanium(III) salt Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2).Na(THF)(2)(8). A comparison of the X-ray structures of 2-Ti and 8 showed that the additional electron in 8 significantly reduced the intensity of the pi-bonding from the oxygen atoms of the isopropoxide groups to titanium. 1-Ca and 8 were active initiators for the ring-opening polymerisation of epsilon-caprolactone (up to 97% conversion of 200 equivalents in 2 hours) and yielded polymers with narrow molecular weight distributions.  相似文献   

13.
Sc(BrMgL)(2)Br (L = (R(2)NCH(2)CH(2)NCMe)(2)CH, R = H) was studied by DFT methods leading to the conclusion that this diamagnetic formal scandium(I) system enjoys stabilization of its Sc-based filled d(yz)() orbital by a delta-acceptor linear combination of BrMgL ring orbitals. Investigation of the reactivity of Sc(BrMgL)(2)Br (L = (R(2)NCH(2)CH(2)NCMe)(2)CH, R = Et) with H(2)O.B(C(6)F(5))(3) and (HOCH(2))(2)CMe(2), respectively, led to decomposition, with LMgBr being isolated in the latter case.  相似文献   

14.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

15.
A new organically templated layered uranium phosphate fluoride, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has been synthesized by hydrothermal reaction of UO(3), H(3)PO(4), HF, and (CH(3))(2)NCH(2)CH(2)N(CH(3))(2) at 140 degrees C. [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has a layered crystal structure consisting of seven-coordinated UO(5)F(2) pentagonal bipyramids and four-coordinated HPO(4) tetrahedra. Each anionic layer containing three-, four-, and six-membered rings is separated by [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations. The [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations may be readily exchanged with the M(2+) ions (M = Ba, Sr and Ca) in water to give high crystalline AE(UO(2))(2)(PO(4))(2).6H(2)O (AE = Ca, Sr, Ba).  相似文献   

16.
Chlorination of [14]aneS(4)-ol (1,4,8,11-tetrathiatetradecan-6-ol) and cis/trans-[14]aneS(4)-diol (cis/trans-1,4,8,11-tetrathiatetradecane-6,13-diol) yields the corresponding dichloro-substituted macrocycles [14]aneS(4)-Cl (1,4,8,11-tetrathiatetradecane 6-chloride) and cis/trans-[14]aneS(4)-Cl(2) (cis/trans-1,4,8,11-tetrathiatetradecane 6,13-dichloride) in good yield. Thiomethylation of the chlorides produces the ring-contracted pendent thioether macrocycles [13]aneS(4)-CH(2)SCH(3) (1,4,7,10-tetrathiatridecane-5-(methylthio)methane) and cis/trans-anti-[12]aneS(4)-(CH(2)SCH(3))(2) (1,4,7,10-tetrathiadodecane-5,11-bis((methylthio)methane)). The mechanism of the ring contraction reaction is discussed in terms of the reactivity of the monochlorinated macrocycle toward ring contraction and the stereochemistry of the chlorinated intermediates and the thiomethylated products, which are based on the X-ray crystal structure analyses of trans-[14]aneS(4)-Cl(2) and trans-anti-[12]aneS(4)-(CH(2)SCH(3))(2).  相似文献   

17.
One bond Pt-P coupling constants (1)J(PtP) of a series of cationic complexes [PtXL(PPh(3))(2)](+) (X = NO(3), Cl, Br, I; L = 4-Z-pyridines, Z = electron withdrawing or releasing groups, 4a-k; or X = Cl, L = NH(3), PhCH(2)NH(2) and (i)PrNH(2), 5a-c) have been used to establish the trans and cis influence sequences of X and pyridines. The crystal structure of compound 4f(BF(4)) with Z = (t)Bu has been resolved. In the pyridine complexes 4a-d (Z = H, variable X), both the trans and cis influence series of the anionic ligands X decrease along the same sequence I > Br > Cl > NO(3), as previously found for [PtX(PPh(3))(3)](+) (X = NO(3), Cl, Br, I, 3a-d), however in 4a-d the cis influence turns out to be more important than the trans. On the contrary, in [PtCl(4-Z-py)(PPh(3))(2)](+) (4b,e-k) the sequence of the trans influence of the 4-Z-pyridines is opposite to that of the cis, the latter being Z = CN > CHO > Br > PhCO > H > Me > (t)Bu > NH(2), i.e. the most basic pyridine gives rise to the lowest cis influence. This correlation was found to hold also for complexes 5a-c (L = amines). All the observed trends have been fully reproduced by B3LYP/def2-SVP DFT calculations, by looking at the relevant optimized bond lengths of selected complexes of type 3, 4 and 5. Subsequent evaluation of the atomic charges, by resorting to two independent methods, i.e., the Natural Bond Order analysis of the wavefunction and the Bader's Quantum Theory of Atoms in Molecules, allowed for rationalization of the origin of the cis and trans influences. The negative charge on the nitrogen atoms of free pyridines becomes more negative upon protonation and even more so when coordinated to the [PtCl(PPh(3))(2)](+) moiety. The least negatively charged nitrogen atom of coordinated pyridines is that of 4-CN-py (the highest cis influencing pyridine derivative), which gives rise to the lowest positive charge on Pt, confirming the relationship between the lowering of the charge on the metal ion and a high cis influence. The trans influence can be described in terms of competition between the charges on the two trans donor atoms. In contrast with the behaviour of pyridines, the positive charge on the phosphorous atom of free PPh(3) increases upon coordination to Pt(II), moreover the PPh(3) ligands acquire a substantial positive charge, thus efficiently delocalising the charge of the cationic complex.  相似文献   

18.
The reaction between (1-acetyl)pyrene and dimethylformamide dimethylacetal followed by condensation of the resulting product mixture with hydrazine affords 3(5)-(1-pyrenyl)pyrazole (2) in good yield. The easily separable bis[(1-pyrenyl)pyrazole]methane derivatives CH(2)(3-pz(pyrene))(2) (3a, pz = pyrazolyl ring) and CH(2)(3-pz(pyrene))(5-pz(pyrene)) (3b) were prepared by metathetical reactions between pyrazole and CH(2)Cl(2), while CH((n)()Pr)(pz(pyrene))(2) (4) was prepared by transamination of 2 with butyraldehyde diethylacetal. Compounds 2-4 are luminescent under irradiation with UV light and have pyrenyl monomer-based emissions centered near 400 nm. Compounds 3a and 4 each react with Re(CO)(5)Br in a 1:1 molar ratio to form highly insoluble complexes Re(CO)(3)Br[(pz(pyrene))(2)CH(2)] (5) and Re(CO)(3)Br[(pz(pyrene))(2)CH((n)()Pr)] (6). Complex Re(CO)(3)Br[(pz)(2)CMe(2)] (7) was also prepared. X-ray structural studies of 6 show extensive pi-stacking of pyrenyl groups to form two-dimensional sheets. Pulsed field gradient spin-echo NMR (PGSE-NMR) experiments show that the complexes are monomeric in tetrachloroethane. Variable-temperature, difference NOE and 2-D NMR experiments demonstrate that isomers are present in solution that differ by restricted rotation about the pyrazolyl-pyrenyl bond. The pyrenyl-based emissions centered near 400 nm are quenched by complexation to the Re(CO)(3)Br moiety in 5 and 6.  相似文献   

19.
The cyclopropanation reaction of chromium Fischer carbene complexes with alkenyl oxazolines has been studied in both racemic and enantioselective fashions. The oxazolinyl group acts as both electron-acceptor substituent and chiral auxiliary. Achiral (4,4-dimethyloxazolin-2-yl)alkenes derived from trans-crotonic and trans-cinnamic acids 2a,b undergo the cyclopropanation reaction to give 4a-d,g with excellent diastereoselectivity (trans/cis ratio between 93:7 and >97:3), while those derived from acrylic and metacrylic acids 2c,d give the cyclopropanes 4e,f,h with much lower selectivity (trans/cis ratio between 68:32 and 83:17). The homogeneous catalytic hydrogenolysis of 4 leads in a selective manner to 5 or 6, depending on the nature of the R3 substituent. The removal of the oxazoline moiety is achieved by carboxybenzylation/hydrolysis and ester reduction, yielding monoprotected 1,4- and 1,3-diols 9 and 11, respectively. The alkenes derived from enantiopure (S)-valinol and (S)-tert-leucinol 3 led to cyclopropanes trans-12 with high relative and absolute stereocontrol. Using tert-leucinol as the auxiliary permits attaining total facial stereoselectivity (>98% ee). Reductive cleavage of the cyclopropane ring and removal of the auxiliary afford the enriched alcohols (3S,4S)-9 and (S)-11. The stereochemical outcome of the cyclopropanation reaction is rationalized by a trans approach of the s-cis conformer of the alkenyl oxazoline to the carbene complex involving the less hindered face of the oxazoline auxiliary and the re-face of the carbene complex.  相似文献   

20.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号