首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
涡流及其应用   总被引:1,自引:0,他引:1  
 大块金属在交变磁场中或相对磁场运动时,在金属内会出现流线为闭合涡旋状的感应电流,该电流叫涡旋电流,简称涡流。一、涡流产生的原因由法拉第电磁感应定律知,当通过闭合回路的磁通量发生变化时,将产生感生电动势,形成感生电流。由于金属内部处处可以构成回路,当大块金属处在变化着的磁场中或相对磁场运动时,穿过金属任意回路的磁通量都可能发生变化,在磁通量变化过程中,金属块内将产生感应电流,这种电流的流线在金属块内自行闭合,形成涡流。  相似文献   

2.
1831年英国物理学家法拉第经过十年不懈的研究得出结论:一个闭合线圈,当穿过它的磁通量发生变化时,就产生感应电动势和感应电流。本实验要求分析感应电流的方向和磁通量变化之间的关系.为此,我们用两种方法使穿过线圈的磁通量发生变化,并观察相应的感应电流的方向.最后综合归纳出闭合线圈中原磁通量变化时,感应电流的磁场总是阻碍原磁通量变化的作用规律——楞次定律.  相似文献   

3.
感应电流与感应电动势的计算梁汝龙(云南烟草学校昆明650200)众所周知,法拉第电磁感应定律是电磁感应知识的重点.本文和同学们谈谈掌握这个定律和计算感应电动势的有关问题供大家参考.1感应电流产生的必要充分条件变化的磁场使闭合回路产生的电流,叫感应电流...  相似文献   

4.
正确理解电磁感应规律是研究电磁感应问题的关键,以下从两个方面来谈谈解决电磁感应问题的基本思路与方法.1正确理解电磁感应规律的概念 (1)△φ/△t表示的是磁通量的变化率,当磁通量随时间均匀变化时,感应电动势与时间无关;当磁通量随时间非均匀变化时,由=N△φ/△t算出的是平均感应电动势.当导体在匀强磁场中匀速切割感线时,导体上的感应电动势不随时间变化;当导体在匀强磁场中变速切割磁感线时,导体上的感应电动势随时间变化,在这种情况下,只要以平均速度代替速度,就可以得到导体上的平均感应电动势. 如图1所示…  相似文献   

5.
 按照法拉第电磁感应定律和楞次定律,当某一回路中的磁通量发生变化时,回路中将出现感应电动势。如果回路是导体回路,则回路中将出现感应电流。感应电流的出现又将产生阻碍回路中磁通量的变化。A为圆柱形磁铁,B为金属圆管。  相似文献   

6.
汪新亮 《物理通报》2006,(12):53-54
法拉第电磁感应定律是电磁学中的重要内容,它揭示了感应电动势E感与闭合线圈内磁通量的变化率△Ф/△t、线圈匝数n所成的正比关系:E感=n△Ф/△t在实验总结出感应电流、感应电动势产生的条件后,教材中通过用条形磁铁插入、拔出串接了灵敏电流表的闭合线圈实验,分析插、拔磁铁的快慢与灵敏电流表指针摆动幅度的关系,得出“闭合线路内,磁通量的变化率越大,线圈的匝数越多,产生的感应电动势也就越大”的结论。  相似文献   

7.
产生感应电流的条件及感应电流方向的判断分为两种:闭合电路的部分导体在磁场中做切割磁感线运动,感应电流的方向用右手定则判断(初中教材);穿过闭合电路的磁通量发生变化,感应电流方向由楞次定律判断(高中教材).以上两种又概括为穿过闭合电路的磁通量发生变化.这样,感应电流的方向可统一来用楞次定律判断.  相似文献   

8.
为了表述电磁感应定律,设在t1时刻穿过导线回路的磁通量是φ1,在t2时刻穿过导线回路的磁通量是φ2,在△t=t2-t1时间内穿过回路磁通量的变化是△φ=φ2-φ1,磁通量的变化率反映了磁通量变化的快慢和趋势.1法拉第电磁感应定律 公式:式中φ用Wb,t用S,的单位是V,式中的负号代表感应电动势的方向. 感应电动势和磁通量是标量,它们的正负都是相对于某个正方向而言的.所谓正方向是人为约定的,用以与实际方向作比较的. 因为的正方向是选取回路的绕行方向,而磁通量选取的正方向是曲面的法线方向.这里就有了两…  相似文献   

9.
电磁感应现象和判断感应电流的方向即交互运用楞次定律和右手定则是电磁感应的重点,尤其是穿过环的磁通量发生变化,在环中会产生感应电流的这类问题最为典型。在平时学习中,对单独一个环判断电流流向和环具有收缩或扩张趋势时,学生都较容易理解,但当遇到双环叠加时,在理解上很困惑。针对这个问题,笔者浅析如下。  相似文献   

10.
很多教材只讨论闭合导体回路的电磁感应现象, 事实上非闭合导体中也会产生感应电流. 大块导体即 使外形上不闭合, 但当周围磁场发生变化时, 导体内部带电粒子也会在涡旋电场作用下形成涡流. 本文利用涡流的 形成及其磁效应原理对楞次定律演示环及楞次定律演示仪的实验现象进行解释推理  相似文献   

11.
电磁感应的几点深入讨论北京印刷学院贺准城一、法拉第电心感应定律的普遍形式1.法拉第电磁感应定律众所周知,法拉第电磁感应定律叙述如下:沿任一回路的感应电动势等于穿过以此回路为界的任一曲面磁通量变化率的负值.这里我们应用国际单位制,不再申明.实验证明,定...  相似文献   

12.
跳圈实验是电磁感应现象的一个典型演示实验,在普通物理的教学中人们常常演示这一现象.但是,如何正确地分析这一现象却值得我们注意.若考虑不周,很容易出现差错.人们通常在演示这一现象以后,仅仅用楞次定律来解释跳圈现象──闭合回路中感应电流方向,总是使得它所激发的磁场阻止引起感应电流的磁通量的变化. 如:设有一铁心线圈通以正弦交流电i1,i1某一时刻的方向如图一所示,此刻由il激发的磁场方向向上,相当于铁心上端出现N极,当i1增加时,由i1在铝矿中所激发的磁场同时增强,即磁通量;增大,根据楞决定律,铝环中的感应电流i2沿顺时针方向,感…  相似文献   

13.
周上游 《物理通报》2012,(10):72-73
1834年俄国物理学家楞次概括了各种实验结果,提出了直接判断感应电流方向的法则,即楞次定律,闭合回路中产生感应电流的磁场总是要阻碍引起感应电流磁通量的变化.在进行楞次定律的教学中,学生通常不太理解定律中"阻碍变化"的涵义.笔者在教学中,用实验来突破学生理解上的难  相似文献   

14.
对于电磁感应中的闭合回路问题:电磁感应过程中产生感应电流,从而使产生感应电动势的导体受到磁场力作用,继而影响其切割磁感线的速度和加速度,而速度的变化又影响导体中产生的感应电动势和感应电流,于是就形成了一个复杂的动态循环过程;且在这一复杂的动态循环过程中,要涉及闭合电路中各用电器的消耗功率的变化,存在多种形式能量的转化.  相似文献   

15.
电磁感应中的力学问题,常以导体棒在磁场中运动的形式出现.导体棒在导电滑轨上运动,切割磁感线,产生感应电动势,使闭合回路中产生感应电流,导体棒受到安培力作用而使运动状态发生变化.因此感应电流与导体棒的加速度是一种相互制约的动态变化关系,最终导体棒达到某种稳定状态.下面结合具体实例对这种问题归类解析.  相似文献   

16.
楞次定律是电磁学中的一条重要定律.在判断感应电流的方向时,为了形象地、简明地表述判断方法,大家都把它归纳为“增反减同”.即当引起感应电流的磁通量增加时,感应电流的磁场与引起感应电流的磁场方向相反;当引起感应电流的磁通量减少时,感应电流的磁场与引起感应电流的磁场方向相同.  相似文献   

17.
错误之一:磁通量跟线圈的匝数成正比. 这是一个较为流行的误解.有这样一道题目:如图1所示,一匝线圈的面积为S,垂直于磁场方向放置,磁场是磁感强度为B的匀强磁场,求穿过线圈的磁通量Φ1是多少.若把线圈换成N匝线圈,面积和放置方式都不变,再求穿过整个线圈的磁通量Φ2是多少.  相似文献   

18.
电磁感应定律两种表述的等价性   总被引:1,自引:0,他引:1  
在《大学物理》上读到两个有关电磁感应佯谬的例子(见《大学物理》)1982, 2, p21图1及图2),涉及到电磁感应定律两种表述的适用条件和所受的限制是否相同、两种表述是否等价问题。我们知道,电磁感应有两大类型──切割磁力线型和磁场变化型。切割型的感应电流是磁场中随导体运动的电荷在洛仑兹力的作用下形成的。导体中的动生电动势为场变型的感应电流是在变化的磁场激发的电场作用下形成的。回路中的感生电动势为 任一种类型的电磁感应都可使回路的磁通量发生变化。切割型和场变型的电磁感应定律可分别写作若两种类型的电磁感应同时存在,电…  相似文献   

19.
宋金凤 《物理通报》2011,40(8):47-48
1问题的引入笔者遇一电磁感应问题,将之改编后如下.如图1所示,高为h的桌面上放置两条平行的导轨,间距为L,电阻不计.导轨右端与桌面边缘相齐,左边接一电动势为E,内阻为r的电源.在导轨上放置一质量为m,电阻为R的导体棒,整个装置放置在竖直向下的匀强磁场中,磁感应强度为B.闭合开关S之后,导体棒从桌面边缘飞出,落地时的水平位移为s.求:整个过程中回路产生的焦耳热.  相似文献   

20.
几乎所有的物理教材中,都编入了下面一道题。如8所示,导体回路abcd,处于匀强磁场B中,设导线ab的长度为L,当ab以匀速率。肉右运动时,求回路中的感应电动势 i?各书所给的答案都是  i=BLv。 根据题意,上述答案是欠妥的.当导线ab以匀速率向右运动时,导体回路中产生了感生电流,感生电流也要激发磁场.因此,空间各点不仅存在着匀强磁场B,而且还存在着感生电流的磁场Bi,空间各点的总磁场B总=B Bi,而上述答案是认为回路中有了感生电流后空间各点的磁场仍为B而得到的,这显然是欠妥的.从原则上说,根据法拉第电磁感应定律总能求得此题的精确结果.…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号