首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The use of ultra-high pressure liquid chromatography (UHPLC) with pressures up to 1000bar and columns packed with sub-2-mum particles combined with high-temperature mobile phase conditions (up to 90 degrees C) is assessed according to the current available instrumentation via constrained kinetic plot equations. It is shown that the gain in separation speed, theoretically expected from high-temperature UHPLC (HT-UHPLC), is significantly reduced when taking into account the existing instrumental constraints (extra-column band broadening, flow-rate and column length limitations). This study also shows that significant improvements could be expected on the current commercial instruments by increasing the flow-rate limit and/or using packing columns with particle size in the range 2.5-3.5mum instead of the current sub-2mum. These particles should obviously withstand very high pressure.  相似文献   

2.
A kinetic plot based method has been used to experimentally predict the optimal particle size yielding the maximal isocratic peak capacity in a given analysis time. Applying the method to columns of three different manufacturers and characterizing them by separating a 4-component paraben mixture at 30 degrees C, it was consistently found that the classical 3 and 3.5 microm particles provide the highest peak capacity for typical isocratic separation run times between 30 and 60 min when operating the columns at a conventional pressure of 400 bar. Even at 1000 bar, the sub-2 microm particles only have a distinct advantage for runs lasting 30 min or less, while for runs lasting 45 min or longer the 3 and 3.5 microm again are to be preferred. This finding points at the advantage for high-resolution separations that could be obtained by producing 3 and 3.5 microm particle columns that can be operated at elevated pressures.  相似文献   

3.
To study the influence of the particle size distribution (PSD), we measured the chromatographic performance of a series of sub-2 microm particle high performance liquid chromatography (HPLC) columns packed with four different particle mixtures having a purposely imposed different size distribution. Using the reduced kinetic plot representation by plotting the separation impedance (E(0)) versus the plate number ratio (N(opt)/N), the different columns could be classified according to their chromatographic performance without the need to specify a mean particle diameter or a molecular diffusion coefficient, as is needed in the classical reduced plate height and flow resistance analysis. The present analysis shows that it is not so much the width or span of the particle size distribution, but rather the presence of fines that greatly determines the chromatographic performance of particulate columns.  相似文献   

4.
Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.  相似文献   

5.
In this study, ultra performance liquid chromatography (UPLC) using pressures up to 1,000 bar and columns packed with sub-2 microm particles has been combined with high temperature mobile phase conditions (up to 90 degrees C). By using high temperature ultra performance liquid chromatography (HT-UPLC), it is possible to drastically decrease the analysis time without loss in efficiency. The stability and chromatographic behavior of sub-2 microm particles were evaluated at high temperature and high pressure. The chromatographic support remained stable after 500 injections (equivalent to 7,500 column volumes) and plate height curves demonstrated the capability of HT-UPLC to obtain fast separations. For example, a separation of nine doping agents was performed in less than 1 min with sub-2 microm particles at 90 degrees C. Furthermore, a shorter column (30 mm length) was used and allowed a separation of eight pharmaceutical compounds in only 40s.  相似文献   

6.
The use of sub-2-microm particle columns for fast high throughput metabolite ID applications was investigated. Three LC-MS methods based on different sub-2-microm particle size columns using the same analytical 3 min gradient were developed (Methods A, B, and C). Method A was comprised of a 1.8 microm particle column coupled to an MS, methods B and C utilized a 1.7 microm particle column (BEH 50 x 2.1 mm2 id) and 1.8 microm particle column coupled to a Q-TOF MS. The precision and the separation efficiency of the methods was compared with repeated standard injections (N=10) of reference compounds verapamil (VP), propranolol, and fluoxetine. Separation efficiency and MS/MS spectral quality were also evaluated for separation and detection of VP and its two major metabolites norverapamil (NVP) and O-demethylverapamil (ODMVP) in human-liver microsomal incubates. Results show that 1.8 microm particle columns show similar performance for separation of VP and its major metabolites and comparable spectral quality in MS(E) mode of the Q-TOF instrument compared to 1.7 microm particle columns. Additionally, the study also confirmed that sub-2-microm particle size columns can be operated with standard analytical HPLC but that performance is maximized by integrating column in UPLC method with reduced void volumes. All the methods are suitable for the determination of major metabolites for compounds with high metabolic turnover. The high throughput metabolite profile analysis using 384-well plate format of up to 48 compounds in incubates of human-liver microsomes was discussed.  相似文献   

7.
The present paper reports on the possibility to use the kinetic plot method (KPM) to select and design the best possible system to achieve a given number (100,000) of theoretical plates for a pharmaceutical test mixture, using the information obtained from a series of single column performance measurements of sub-2microm and supra-2microm porous shell particles conducted at three different temperatures and using mixtures of acetonitrile and 0.1% formic acid in water as the mobile phase. Because the KPM involves an extrapolation to different column lengths, the quality of the design was subsequently verified by coupling several columns to achieve the optimal total column length and run the actual analysis at the calculated optimal flow rate. The prediction error was generally better than 10%, with a slightly better prediction for t(0) and N than for the retention time t(R). The sub-2microm and the porous shell particle coupled column systems achieve the 100,000 plates about equally fast, despite the fact that the former were used at 1000bar and the latter only at 600bar. The high temperature operation (80 degrees C) yielded the fastest separation in both cases, allowing to reach 100,000 plates for a component eluting at k'=2.5 in only about 15min.  相似文献   

8.
During the last few years, there has been a great interest in the development of fast liquid chromatography. Among the reported approaches, the reduction of the particle size to attain sub-2microm diameter represents a good solution for achieving both increased separation power and faster analysis time. This paper demonstrates the chromatographic performance of such supports using plate-height curves and reveals the possibility for obtaining ultra-fast or highly efficient separations, according to the column geometry and system pressure limitations. The stability of these columns is initially evaluated using a system suitability experiment. The chromatographic performance remains stable in terms of retention, efficiency, and pressure for more than 1700 injections with pressure conditions ranging from 200 to 800 bar. Several fast and ultra-fast pharmaceutical applications are reported. In isocratic mode, a 5- to 10-fold reduction in analysis time is obtained with limited influence on efficiency and resolution. The run time is further reduced by 30-fold with the shorter available columns (i.e., 30 mm length). In gradient mode, the separation of a complex mixture containing an active pharmaceutical compound and related impurities is significantly improved with column length equal to 100 mm, to increase peak capacity and resolution.  相似文献   

9.
Jana Olšovská 《Talanta》2010,80(5):1849-1147
A new ultra high-performance liquid chromatography method with UV detection was examined for detection and separation of polychlorinated biphenyls. This included optimization of separation conditions for two model mixtures containing seven and fifteen most relevant congeners, comparison of three types of reversed phase sub-2-micron particle sized columns and assessment of system suitability under the optimized conditions. Calibration curves determined in the range from 0.5 to 50.0 μg/mL exhibited correlation coefficients ranging from 0.997 to 0.999. Lower limits of detection ranged from 0.1 to 0.5 ppm. The most efficient Grace C18 column filled with 1.5 μm particles was then tested to separate the complex commercial mixture Delor 103, where the elution order was confirmed by GC-MS. 13 individual congeners were separated and some of the other co-eluting congeners could be resolved using another separation dimension performed with a mass spectrometry detector. The developed method could be directly applied to the separation of less complex mixtures in aqueous sample matrixes, which are used in general for enzyme degradation studies.  相似文献   

10.
Recent advances in accurate mass analysis are poised to allow the high-throughput production of accurate mass data on many more compounds than was previously available. It is shown that sub-ppm mass accuracy (producing elemental compositions) can be obtained on a simple TOF mass spectrometer operating in the manufacturer's standard mode. Concomitantly, there have been important technological advances in LC with respect to speed of analysis using sub-2 microm particle columns. Much of the sub-2 microm work in the literature has been under the label ultra performance LC (UPLC), however, we show that very high-speed results can be obtained using other manufacturer's pumps by using elevated column temperatures. Using elevated temperatures, HPLC peak widths on the order of 1 s can be obtained. We report the coupling of these two technologies (sub-ppm mass accuracy MS with high-speed HPLC) for the rapid analysis of compounds entering pharmaceutical libraries.  相似文献   

11.
Columns of 2.7-microm fused-core (superficially porous) Type B silica particles allow very fast separations of small molecules at pressures available in most high-performance liquid chromatography instruments. These highly-purified particles with 1.7-microm solid silica cores and 0.5-microm-thick shells of 9 nm pores exhibit efficiencies that rival those of totally porous sub-2-microm particles but at one-half to one-third of the column back pressure. This presentation describes other operating features of fused-core particle columns, including sample loading characteristics and packed bed stability. The superior mass transfer (kinetic) properties of the fused-core particles result in much-improved separation efficiency at higher mobile phase velocities, especially for > 600 molecular weight solutes.  相似文献   

12.
Ultra-high pressure liquid chromatography enables increased separation speed and efficiency. The quantitative improvement in efficiency is lower than that predicted by theory, and the reasons are not known. In this work, slow mass transport due to analyte desorption from the stationary phase is discussed as a possible contribution to the lower than expected efficiency. Data in the literature for the reversed phase elution of acetophenone, for which particle size was varied with constant particle composition and mobile phase, were used to test this possibility. The mass transport terms for the three particles sizes (1.7, 3.5 and 5.0 microm) fit well to a model that includes desorption from the stationary phase as a contribution, and this analysis yields an apparent desorption time constant of 2.0(+/-0.2)ms for acetophenone in a reversed-phase separation. The results indicate that it is reasonable to consider slow desorption as a possible contribution to the reduced plate height for sub-2-microm particles.  相似文献   

13.
The separation efficiency and kinetics of several commercial HPLC particle types (both fully porous and superficially porous) have been investigated using a pharmaceutical weakly basic N-containing compound as a test molecule. A strong trend between the particle size distribution (PSD) of the particles and the typically employed “goodness of packing”-parameters was observed. The relative standard deviation of the PSD of the tested particles ranged between 0.05 and 0.2, and in this range, a near linear relationship between the A-term constant, the hmin-value and the minimal separation impedance was found. The experimental findings hence confirm the recent observations regarding the relationship between the narrow PSD of the recently commercialized porous-shell particles and their superior efficiency and kinetic performance. The outcome also suggests that the performance of the current generation of fully porous particle columns could be significantly improved if the PSD of these particles could be reduced.  相似文献   

14.
We report electrostatic stabilization of micrometer-sized TiO(2) particles at long range (several micrometers) in liquid and supercritical CO(2) despite the ultralow dielectric constant, as low as 1.5. The counterions were solubilized in dry reverse micelles, formed with a low-molecular weight cationic perfluoropolyether trimethylammonium acetate surfactant, to prevent ion pairing with the particle surface. Dynamic light scattering and settling velocities indicate a particle diameter of 620-740 nm. The electrophoretic mobility of -2.3 x 10(-8) m(2)/V s indicated a particle charge on the order of -1.7 x 10(-17) C, or 105 elementary negative charges per particle. The balance of particle compression by an electric field versus electrostatic repulsion generated an amorphous arrangement of particles with 5-9 mum spacing, indicating Debye lengths greater than 1 mum. Scattering patterns also indicate that chains of particles may be achieved in CO(2) by dielectrophoresis with alternating fields. The electrostatic stabilization has been achieved by solubilizing a small concentration of counterions in only a small fraction of the reverse micelles in the double layer. Whereas many low-molecular weight surfactants have been shown to form reverse micelles in CO(2), very few polymers are able to stabilize micrometer-sized colloids sterically. Thus, electrostatic stabilization has the potential to expand markedly the domain of colloid science in apolar supercritical fluids.  相似文献   

15.
We present a technique for measuring colloid size distributions between 15 nm and 2 microm at concentrations relevant to natural surface waters. Two particle-measuring methods are combined: laser-induced breakdown detection (LIBD), which allows the quantification of colloid size distributions below 400 nm, and a commercial single-particle counter that extends the accessible size range up to two mum. Centrifugation was used in order to separate micrometer sized particles for the LIBD measurement. The feasibility is demonstrated on water of Lake Brienz (Switzerland) and the River Pfinz (Germany) and the particle size distributions follow Pareto's law even down to 15 nm in both cases.  相似文献   

16.
The practical effects of gradient time and flow rate on the peak capacities of a range of analytes of differing molecular weights (MWs) and physico-chemical properties have been evaluated using ultra high pressure LC instrumentation with sub-2 mum and superficially porous particle phases. Optimum peak capacity, in RP gradient LC, for small molecules, including typical pharmaceutical drugs and peptides with MWs up to 1300, was demonstrated at a maximum flow rate for a given gradient time (i.e. up to 40 min). Flow rates significantly higher than the optimum in the van Deemter plots and also higher than those typically employed by the majority of the chromatographers today are recommended for gradient LC (i.e. up to 1.0 mL/min on 50-150x2.1 mm 1.7 mum columns). This recommendation is applicable for temperatures above 40 degrees C, i.e. temperatures typically utilized for separations employing sub-2 mum particles to reduce column back pressure. Van Deemter and pseudo van Deemter plots were determined and combined with chromatographic gradient elution theory to explain our unexpected observations. The derived models exhibited good agreement between experimental and predicted peak capacities (absolute average error 4%, max. error 12%).  相似文献   

17.
The effect of the addition of 25%, 50% and 75% (weight percent, wt%) of larger particles (resp. 3 and 5 μm) to a commercial batch of 1.9 μm particles has been investigated as an academic exercise to study the effects of particle size distribution on the kinetic performance of packed bed columns in a magnified way. Comparing the performance of the different mixtures in a kinetic plot, it could be irrefutably shown that the addition of larger particles to a commercial batch of small particles cannot be expected to lead to an improved kinetic performance. Whereas the addition of 25 wt% of larger particles still only has a minor negative effect, a significantly deteriorated performance is obtained when 50 or 75 wt% of larger particles are added. In this case, separation impedance number increases up to 200% were observed. Studying the packing structure through computational packing simulations, together with the experimental determination of the external porosity, helped in understanding the obtained results. This showed that small particles tend to settle in the flow-through pores surrounding the larger particles, leading to very high packing densities (external porosities as low as 32% were observed) and also negatively influencing the column permeability as well as the band broadening (because of the broadened flow-through pore size range).  相似文献   

18.
Today sub-2 μm packed columns are very popular to conduct fast chromatographic separations. The mass-transfer resistance depends on the particle size but some practical limits exist not to reach the theoretically expected plate height and mass-transfer resistance. Another approach applies particles with shortened diffusion path to enhance the efficiency of separations. In this study a systematical evaluation of the possibilities of the separations obtained with 5 cm long narrow bore columns packed with new 2.6 μm shell particles (1.9 μm nonporous core surrounded by a 0.35 μm porous shell, Kinetex™, Core-Shell), packed with other shell-type particles (Ascentis Express™, Fused-Core), totally porous sub-2 μm particles and a 5 cm long narrow bore monolith column is presented. The different commercially available columns were compared by using van Deemter, Knox and kinetic plots. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Data are presented on polar neutral real-life analytes. Comparison of a low molecular weight compounds (MW = 270–430) and a high molecular weight one (MW ∼ 900) was conducted. This study proves that the Kinetex column packed with 2.6 μm shell particles is worthy of rivaling to sub-2 μm columns and other commercially available shell-type packings (Ascentis Express or Halo), both for small and large molecule separation. The Kinetex column offers a very flat C term. Utilizing this feature, high flow rates can be applied to accomplish very fast separations without significant loss in efficiency.  相似文献   

19.
Fused-Core particles have recently been introduced as an alternative to using sub-2-microm particles in chromatographic separations. Fused-Core particles are composed of a 1.7 microm solid core surrounded by a 0.5 microm porous silica layer (d(p) = 2.7 microm) to reduce mass transfer and increase peak efficiency. The performance of two commercially available Fused-Core particles (Advanced Materials Technology Halo C18 and Supelco Ascentis Express C18) was compared with sub-2-microm particles from Waters, Agilent, and Thermo Scientific. Although the peak efficiencies were only approximately 80% of those obtained by the Waters Acquity particles, the 50% lower backpressure allowed columns to be coupled in series to increase peak efficiency to 92,750 plates. The low backpressure and high efficiencies of the Fused-Core particles offer a viable alternative to using sub-2-microm particles and very-high-pressure LC instrumentation.  相似文献   

20.
The effects of extra-column band spreading, LC system operating pressure, and separation temperature were investigated for sub-2-μm particle columns using both a conventional HPLC system as well as a UPLC® system. The contributions of both volume- and time-based extra-column effects were analyzed in detail. In addition, the performance difference between columns containing 2.5 and 1.7-μm particles (same stationary phase) was studied. The performance of these columns was compared using a conventional HPLC system and a low dead volume UPLC system capable of routine operation up to 1000 bar. The system contribution to band spreading and the pressure limitations of the conventional HPLC system were found to be the main difficulties that prevented acceptable performance of the sub-2-μm particle columns. Finally, an increase in operating temperature needs to be accompanied by an increase in flow rate to prevent a loss of separation performance. Thus, at a fixed column length, an increase in temperature is not a substitute for the need for very high operating pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号