首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An iteration method is constructed to solve the linear matrix equation AXB=C over symmetric X. By this iteration method, the solvability of the equation AXB=C over symmetric X can be determined automatically, when the equation AXB=C is consistent over symmetric X, its solution can be obtained within finite iteration steps, and its least-norm symmetric solution can be obtained by choosing a special kind of initial iteration matrix, furthermore, its optimal approximation solution to a given matrix can be derived by finding the least-norm symmetric solution of a new matrix equation . Finally, numerical examples are given for finding the symmetric solution and the optimal approximation symmetric solution of the matrix equation AXB=C.  相似文献   

2.
A new class of one-step one-stage methods (ABC-schemes) designed for the numerical solution of stiff initial value problems for ordinary differential equations is proposed and studied. The Jacobian matrix of the underlying differential equation is used in ABC-schemes. They do not require iteration: a system of linear algebraic equations is once solved at each integration step. ABC-schemes are A- and L-stable methods of the second order, but there are ABC-schemes that have the fourth order for linear differential equations. Some aspects of the implementation of ABC-schemes are discussed. Numerical results are presented, and the schemes are compared with other numerical methods.  相似文献   

3.
In this article, a new equation is derived for the optimal feedback gain matrix characterizing the solution of the standard linear regulator problem. It will be seen that, in contrast to the usual algebraic Riccati equation which requires the solution ofn(n + 1)/2 quadratically nonlinear algebraic equations, the new equation requires the solution of onlynm such equations, wherem is the number of system input terminals andn is the dimension of the state vector of the system. Utilizing the new equation, results are presented for the inverse problem of linear control theory.  相似文献   

4.
An algorithm of the Bartels-Stewart type for solving the matrix equation AX + X T B = C is proposed. By applying the QZ algorithm, the original equation is reduced to an equation of the same type having triangular matrix coefficients A and B. The resulting matrix equation is equivalent to a sequence of low-order systems of linear equations for the entries of the desired solution. Through numerical experiments, the situation where the conditions for unique solvability are “nearly” violated is simulated. The loss of the quality of the computed solution in this situation is analyzed.  相似文献   

5.
Complex valued systems of equations with a matrix R + 1S where R and S are real valued arise in many applications. A preconditioned iterative solution method is presented when R and S are symmetric positive semi‐definite and at least one of R, S is positive definite. The condition number of the preconditioned matrix is bounded above by 2, so only very few iterations are required. Applications when solving matrix polynomial equation systems, linear systems of ordinary differential equations, and using time‐stepping integration schemes based on Padé approximation for parabolic and hyperbolic problems are also discussed. Numerical comparisons show that the proposed real valued method is much faster than the iterative complex symmetric QMR method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The main difficulty in numerical solution of integral equations of electrodynamics is associated with the need to solve a high-order system of linear equations with a dense matrix. It is therefore relevant to develop numerical methods that lead to linear equation systems of lower order at the cost of more complex evaluation of the coefficients. In this article we propose a method for solving linear equations of electrodynamics which is a modification of the integral current method. The main distinctive feature of the proposed method is double integration of the electric Green’s tensor in the process of algebraization of the original integral equation. The solutions of the system of linear equations are thus integral means of the electric field inside the anomaly constructed by the proposed transformation formula. We prove convergence and derive error bounds for both the solution of the integral equation and the electromagnetic field components evaluated from approximate transformation formulas.  相似文献   

7.
In this paper, an iterative algorithm is constructed for solving linear matrix equation AXB = C over generalized centro-symmetric matrix X. We show that, by this algorithm, a solution or the least-norm solution of the matrix equation AXB = C can be obtained within finite iteration steps in the absence of roundoff errors; we also obtain the optimal approximation solution to a given matrix X 0 in the solution set of which. In addition, given numerical examples show that the iterative method is efficient.  相似文献   

8.
Fractional calculus is an extension of derivatives and integrals to non-integer orders, and a partial differential equation involving the fractional calculus operators is called the fractional PDE. They have many applications in science and engineering. However not only the analytical solution existed for a limited number of cases, but also the numerical methods are very complicated and difficult. In this paper, we newly establish the simulation method based on the operational matrices of the orthogonal functions. We formulate the operational matrix of integration in a unified framework. By using the operational matrix of integration, we propose a new numerical method for linear fractional partial differential equation solving. In the method, we (1) use the Haar wavelet; (2) establish a Lyapunov-type matrix equation; and (3) obtain the algebraic equations suitable for computer programming. Two examples are given to demonstrate the simplicity, clarity and powerfulness of the new method.  相似文献   

9.
We consider implicit integration methods for the solution of stiff initial value problems for second-order differential equations of the special form y' = f(y). In implicit methods, we are faced with the problem of solving systems of implicit relations. This paper focuses on the construction and analysis of iterative solution methods which are effective in cases where the Jacobian of the right‐hand side of the differential equation can be split into a sum of matrices with a simple structure. These iterative methods consist of the modified Newton method and an iterative linear solver to deal with the linear Newton systems. The linear solver is based on the approximate factorization of the system matrix associated with the linear Newton systems. A number of convergence results are derived for the linear solver in the case where the Jacobian matrix can be split into commuting matrices. Such problems often arise in the spatial discretization of time‐dependent partial differential equations. Furthermore, the stability matrix and the order of accuracy of the integration process are derived in the case of a finite number of iterations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Gegenbauer wavelets operational matrices play an important role in the numeric solution of differential equations. In this study, operational matrices of rth integration of Gegenbauer wavelets are derived and used to obtain an approximate solution of the nonlinear extended Fisher-Kolmogorov (EFK) equation in two-space dimension. Nonlinear EFK equation is converted into the linear partial differential equation by quasilinearization technique. Numerical examples have shown that present method is convergent even in the case of a small number of grid points. The results of the presented method are in a good agreement with the results in literature.  相似文献   

11.
In this study, an approximate method based on Bernoulli polynomials and collocation points has been presented to obtain the solution of higher order linear Fredholm integro-differential-difference equations with the mixed conditions. The method we have used consists of reducing the problem to a matrix equation which corresponds to a system of linear algebraic equations. The obtained matrix equation is based on the matrix forms of Bernoulli polynomials and their derivatives by means of collocations. The solutions are obtained as the truncated Bernoulli series which are defined in the interval [a,b]. To illustrate the method, it is applied to the initial and boundary values. Also error analysis and numerical examples are included to demonstrate the validity and applicability of the technique.  相似文献   

12.
Moore-Penrose广义逆矩阵与线性方程组的解   总被引:3,自引:1,他引:2  
线性方程组的逆矩阵求解方法只使用于系数矩阵为可逆方阵,对于一般线性方程组可以应用Moore-Penrose广义逆矩阵来研究并表示其通解,本文主要探讨Moore-Penrose广义逆矩阵及一般线性方程组通解和最小范数解.  相似文献   

13.
An n×n real matrix P is said to be a symmetric orthogonal matrix if P = P?1 = PT. An n × n real matrix Y is called a generalized centro‐symmetric with respect to P, if Y = PYP. It is obvious that every matrix is also a generalized centro‐symmetric matrix with respect to I. In this work by extending the conjugate gradient approach, two iterative methods are proposed for solving the linear matrix equation and the minimum Frobenius norm residual problem over the generalized centro‐symmetric Y, respectively. By the first (second) algorithm for any initial generalized centro‐symmetric matrix, a generalized centro‐symmetric solution (least squares generalized centro‐symmetric solution) can be obtained within a finite number of iterations in the absence of round‐off errors, and the least Frobenius norm generalized centro‐symmetric solution (the minimal Frobenius norm least squares generalized centro‐symmetric solution) can be derived by choosing a special kind of initial generalized centro‐symmetric matrices. We also obtain the optimal approximation generalized centro‐symmetric solution to a given generalized centro‐symmetric matrix Y0 in the solution set of the matrix equation (minimum Frobenius norm residual problem). Finally, some numerical examples are presented to support the theoretical results of this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
张凯院  王娇 《数学杂志》2015,35(2):469-476
本文研究了一类Riccati矩阵方程广义自反解的数值计算问题.利用牛顿算法将Riccati矩阵方程的广义自反解问题转化为线性矩阵方程的广义自反解或者广义自反最小二乘解问题,再利用修正共轭梯度法计算后一问题,获得了求Riccati矩阵方程的广义自反解的双迭代算法.拓宽了求解非线性矩阵方程的迭代算法.数值算例表明双迭代算法是有效的.  相似文献   

15.
This paper proposes operational matrix of rth integration of Chebyshev wavelets. A general procedure of this matrix is given. Operational matrix of rth integration is taken as rth power of operational matrix of first integration in literature. But, this study removes this disadvantage of Chebyshev wavelets method. Free vibration problems of non-uniform Euler–Bernoulli beam under various supporting conditions are investigated by using Chebyshev Wavelet Collocation Method. The proposed method is based on the approximation by the truncated Chebyshev wavelet series. A homogeneous system of linear algebraic equations has been obtained by using the Chebyshev collocation points. The determinant of coefficients matrix is equated to the zero for nontrivial solution of homogeneous system of linear algebraic equations. Hence, we can obtain ith natural frequencies of the beam and the coefficients of the approximate solution of Chebyshev wavelet series that satisfied differential equation and boundary conditions. Mode shapes functions corresponding to the natural frequencies can be obtained by normalizing of approximate solutions. The computed results well fit with the analytical and numerical results as in the literature. These calculations demonstrate that the accuracy of the Chebyshev wavelet collocation method is quite good even for small number of grid points.  相似文献   

16.
With the help of the Kronecker map, a complete, general and explicit solution to the Yakubovich matrix equation VAVF=BW, with F in an arbitrary form, is proposed. The solution is neatly expressed by the controllability matrix of the matrix pair (A,B), a symmetric operator matrix and an observability matrix. Some equivalent forms of this solution are also presented. Based on these results, explicit solutions to the so-called Kalman–Yakubovich equation and Stein equation are also established. In addition, based on the proposed solution of the Yakubovich matrix equation, a complete, general and explicit solution to the so-called Yakubovich-conjugate matrix is also established by means of real representation. Several equivalent forms are also provided. One of these solutions is neatly expressed by two controllability matrices, two observability matrices and a symmetric operator matrix.  相似文献   

17.
Perturbation bounds are given for the solution of the nth order differential matrix Riccati equation using the associated linear 2nth order differential system. The new bounds are alternative to those existing in the literature and are sharper in some cases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
In this paper, stochastic operational matrix of integration based on delta functions is applied to obtain the numerical solution of linear and nonlinear stochastic quadratic integral equations (SQIEs) that appear in modelling of many real problems. An important advantage of this method is that it dose not need any integration to compute the constant coefficients. Also, this method can be utilized to solve both linear and nonlinear problems. By using stochastic operational matrix of integration together collocation points, solving linear and nonlinear SQIEs converts to solve a nonlinear system of algebraic equations, which can be solved by using Newton's numerical method. Moreover, the error analysis is established by using some theorems. Also, it is proved that the rate of convergence of the suggested method is O(h2). Finally, this method is applied to solve some illustrative examples including linear and nonlinear SQIEs. Numerical experiments confirm the good accuracy and efficiency of the proposed method.  相似文献   

19.
本文研究了四元数体上矩阵方程XB = C 的循环解及其最佳逼近问题. 利用循环矩阵的结构表示式, 以及四元数矩阵的复分解, 得到了方程XB = C 的循环解存在条件及其通解形式; 在循环矩阵约束条件下, 给出了该方程的最小二乘解集合; 与此同时, 在最小二乘解集合中, 获得与给定四元数循环矩阵的最佳逼近解. 推广了约束矩阵方程的数值求解范围. 数值算例验证了本文算法的可行性.  相似文献   

20.
本文研究了四元数体上矩阵方程XB=C的循环解及其最佳逼近问题.利用循环矩阵的结构表示式,以及四元数矩阵的复分解,得到了方程XB=C的循环解存在条件及其通解形式;在循环矩阵约束条件下,给出了该方程的最小二乘解集合;与此同时,在最小二乘解集合中,获得与给定四元数循环矩阵的最佳逼近解.推广了约束矩阵方程的数值求解范围.数值算例验证了本文算法的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号