首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The AB‐monomer, 3,4‐diaminobenzoic acid dihydrochloride, was recrystallized from an aqueous hydrochloric acid solution and used to synthesize high‐molecular‐weight poly(2,5‐benzimidazole) (ABPBI). ABPBI/carbon nanotube (CNT) composites were prepared via in situ polymerization of the AB‐monomer in the presence of single‐walled carbon nanotube (SWCNT) or multiwalled carbon nanotube (MWCNT) in a mildly acidic polyphosphoric acid. The ABPBI/SWCNT and ABPBI/MWCNT composites displayed good solubility in methanesulfonic acid and thus, uniform films could be cast. The morphology of these composite films was studied by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results showed that both types of CNTs were uniformly dispersed into the ABPBI matrix. Tensile properties of the composite films were significantly improved when compared with ABPBI, and their toughness (~200 MPa) was close to the nature's toughest spider silk (~215 MPa). The electrical conductivities of ABPBI/SWCNT and ABPBI/MWCNT composite films were 9.10 × 10?5 and 2.53 × 10?1 S/cm, respectively, whereas that of ABPBI film was 4.81 × 10?6 S/cm. These values are ~19 and 52,700 times enhanced by the presence of SWCNT and MWCNT, respectively. Finally, without acid impregnation, the ABPBI film was nonconducting while the SWCNT‐ and MWCNT‐based composites were proton conducting with maximum conductivities of 0.018 and 0.017 S/cm, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1067–1078, 2010  相似文献   

2.
The thermal oxidation degradation of styrene–butadiene rubber (SBR) was investigated by in situ FTIR, 2D-FTIR, and programming heating DSC. The results of analyses suggest that the degradation reaction is an autocatalytic process and mainly occurs on the aliphatic part instead of benzene pendants. Based on the results of in situ FTIR and 2D-FTIR, the oxidation process can be divided into three stages. In stage one, just two carbonyl peaks appear, namely 1,697 cm?1 (conjugate carbonyls) and 1,727 cm?1 (saturated carbonyls), and the generation speed is 1,697 > 1,727 cm?1. Yet the peaks appearing at 1,777 cm?1 belonged to peresters and anhydrides generating in stages two and three. The generation sequences are: 1,698 > 1,727 > 1,777 cm?1 for stage two; and 1,698 < 1,727 < 1,777 cm?1 for stage three. According to DSC results, the thermal oxidation of SBR contains four steps. The first step is the generation of alkyl radicals and the accumulation of hydroperoxide species. The second step is initial oxidation stage mainly producing conjugate carbonyls. The third step is deep oxidation process generating diverse carbonyls. The fourth is chain termination reaction, in which step the generation rates of anhydrides and peresters are the fastest due to bi-radical termination of alkoxy radicals and the consumption of conjugate carbonyl. Furthermore, crosslinking reactions occur during the whole thermal oxidation.  相似文献   

3.
Silicone-modified graphene was successfully synthesized by treating graphene oxide with 3-aminopropyltriethoxysilane (AMEO) and then reduced by hydrazine hydrate. Subsequently, the AMEO-functionalized graphene was incorporated into polyurethane (PU) matrix to prepare AMEO-functionalized graphene/PU nanocomposite coatings. The functionalized graphene could disperse homogenously by means of a covalent connection with PU. AMEO-functionalized graphene (AFG)-reinforced PU nanocomposite coatings showed more excellent mechanical and thermal properties than those of pure PU. A 227 % increase in tensile strength and a 71.7 % improvement of elongation at break were obtained by addition 0.2 wt% of AFG. Meanwhile, thermogravimetric analysis reveals that thermal degradation temperature was enhanced almost 50 °C higher than that of neat PU, and differential scanning calorimetry analysis demonstrates that glass transition temperature decreased by around 9 °C. The thermal conductivity of AFG/PU nanocomposite coatings also increased by 40 % at low AFG loadings of 0.2 wt%.  相似文献   

4.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The degradability and durability for polymer–nanocomposites under various environmental conditions are from the essential fields of research. This study was carried out to examine the thermal stability of polystyrene loaded by carbon (C) nanoparticles up to 20 wt% content. The thermal degradation of PS/C nanocomposites were studied by thermogravimetry analysis and differential scanning calorimetry (DSC) under non-isothermal condition and inert gas atmosphere at constant heating rate 10 °C min?1. The variation of degradation characteristic temperatures as a function of C content has been a non-monotonic behavior. The obtained results suggested that the C nanoparticles act as a promoter slowing down the degradation and providing a protective barrier to the nanocomposite, except 5 wt% C content. The latter exception was confirmed by DSC curve through the emergence of a small endothermic peak before the fundamental endothermic, melting, one.  相似文献   

6.
Considering the importance of the nanocomposites, the present work focuses on some new hybrid materials prepared by introducing reactive organoclay (OC) into the chiral poly(amide-imide) (PAI) matrix. At first, Cloisite Na+ was modified with protonated l-isoleucine amino acid. Then, PAI containing phenylalanine was synthesized via solution polycondensation of chiral diacid chloride with 4,4′-diaminodiphenylsulfone and was characterized with Fourier transform infrared (FTIR) and 1H NMR techniques. At last, PAI/OC nanocomposite films containing 2, 5, 10, and 15 % of OC were prepared via solution intercalation method. The effect of OC dispersion and the interaction between OC and polymer chains on the properties of nanocomposites were investigated using FTIR, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, tensile testing of thin films, and thermogravimetry analysis techniques. The thermal stability of hybrids such as the decomposition temperature and mass residue at 800 °C was improved. Mechanical data indicated improvement in the tensile strength of the nanocomposites with OC loading up to 10 wt%. The transparency of the hybrid films was investigated by means of UV–Vis spectra.  相似文献   

7.
In this study, the influences of expanded graphite oxide (EG) nanosheets presence with and without surfactant on structural and thermal performance of poly(ethylene disulfide) (PEDS)-based nanocomposites are investigated. Sodium dodecylbenzenesulfonate (SDBS) is used as a surfactant for the preparation of modified-EG nanosheets. The structural, morphological, and thermal properties of prepared nanocomposites are studied using X-ray diffraction (XRD), scanning electron microscopy, and differential scanning calorimetry techniques, respectively. XRD patterns of nanocomposites reveal that a high degree of expanded graphite nanosheets dispersion is achieved with and without surface modification using in situ polymerization method. Moreover, the presence of immobilized polysulfide chains near the interface region of nanosheets is suggested as a possible reason for the observed increase in the number of semi-crystalline organic fractions in the structure of PEDS via EG nanosheets incorporation. In addition, the morphology of SDBS-modified-EG loaded nanocomposite shows a smoother fracture surface than unmodified-nanosheets reinforced nanocomposite. Therefore, more interactions between nanosheets and polysulfide chains are expected in the structure of unmodified-EG reinforced nanocomposite. Moreover, thermal resistance and degradation kinetics of prepared nanocomposites are studied using thermogravimetric analysis results and degradation activation energy calculations, respectively. The required activation energy for the degradation process of SDBS-EG loaded nanocomposite is about 140 kJ mol?1 lower than the required degradation activation energy of unmodified-nanosheets reinforced nanocomposite.  相似文献   

8.
LPSF/GQ-130 is a drug candidate, according to reports about its significant anti-inflammatory activity and non-toxicity demonstrated in an acute preclinical study. Despite this, knowledge of its physical–chemical properties is insufficient for the development of medicines. Thus, this work aimed to characterize the raw material at its molecular, particle, and agglomerate level as well as evaluate its thermal compatibility to pharmaceutical excipients. Through spectrometric techniques the molecular structure of the substance was confirmed. For thermal analysis its melting (171.3–176.5 °C) and degradation (238.3–297.4 °C) ranges, besides its purity (99.37 %), were determined. The kinetic non-isothermal degradation supplied the order of thermal reaction (0), the activation energy (96.14 kJ mol?1) and the frequency factor (3.130 × 10?7 min?1). The diffraction of X-rays presented well defined signs in the angles 5.5°, 16.3°, and 44.18° 2θ, suggesting crystalline structure. Scanning electronic microscopy exhibited needle morphology. LPSF/GQ-130 presented Type-III isotherm adsorption/desorption, with a superficial area of 81.3529 m2 g?1 and water content calculated at 1 % using the Karl Fisher method. Laser granulometry calculated its granulometry between 11.65 and 13.10 μm, thus it was characterized as a very fine powder. The prototype was classified as insoluble in water (<0.0187 μg mL?1) and soluble in acetone and acetonitrile, and exhibits instability in basic pH (100 %) and oxidative conditions (30–70 %). In thermal compatibility the excipients PVP K-30, Compritol® 888 ATO, and MYRJ® 59 seem to exercise a protective thermal activity for the prototype.  相似文献   

9.

We describe the electrochemical preparation of bismuth nanoribbons (Bi-NRs) with an average length of 100 ± 50 nm and a width of 10 ± 5 μm by a potentiostatic method. The process occurs on the surface of a glassy carbon electrode (GCE) in the presence of disodium ethylene diamine tetraacetate that acts as a scaffold for the growth of the Bi-NRs and also renders them more stable. The method was applied to the preparation of Bi-NRs incorporated into reduced graphene oxide. This nanocomposite was loaded with the enzyme glucose oxidase onto a glassy carbon electrode. The resulting biosensor displays an enhanced redox peak for the enzyme with a peak-to-peak separation of about 28 mV, revealing a fast electron transfer at the modified electrode. The loading of the GCE with electroactive GOx was calculated to be 8.54 × 10−10 mol∙cm−2, and the electron transfer rate constant is 4.40 s−1. Glucose can be determined (in the presence of oxygen) at a relatively working potential of −0.46 V (vs. Ag|AgCl) in the 0.5 to 6 mM concentration range, with a 104 μM lower detection limit. The sensor also displays appreciable repeatability, reproducibility and remarkable stability. It was successfully applied to the determination of glucose in human serum samples.

A potentiostatic method was used to prepare reduced graphene oxide and bismuth nanoribbons nanocomposite on a glassy carbon electrode. This nanocomposite was loaded with enzyme glucose oxidase to fabricate a glucose biosensor.

  相似文献   

10.

A nanocomposite consisting of reduced graphene oxide decorated with palladium-copper oxide nanoparticles (Pd-CuO/rGO) was synthesized by single-step chemical reduction. The morphology and crystal structure of the nanocomposite were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction analysis. A 3-electrode system was fabricated by screen printing technology and the Pd-CuO/rGO nanocomposite was dropcast on the carbon working electrode. The catalytic activity towards glucose in 0.2 M NaOH solutions was analyzed by linear sweep voltammetry and amperometry. The steady state current obtained at a constant potential of +0.6 V (vs. Ag/AgCl) showed the modified electrode to possess a wide analytical range (6 μM to 22 mM), a rather low limit of detection (30 nM), excellent sensitivity (3355 μA∙mM−1∙cm−2) and good selectivity over commonly interfering species and other sugars including fructose, sucrose and lactose. The sensor was successfully employed to the determination of glucose in blood serum.

A highly sensitive nonenzymatic electrochemical sensor was fabricated using a Pd-CuO composite with reduced graphene oxide. The sensor has a wide detection range and was used to sense glucose in blood serum

  相似文献   

11.
The present paper gives new insight into the problem of controlling the morphology of reduced graphene oxide/alumina (RGO/Al2O3) nanocomposites. The dry and simplified sol–gel methods of RGO/Al2O3 nanocomposite synthesis were compared and the influence of six key synthesis parameters on the morphology of the resulting nanocomposite powders was investigated to optimize the morphology of RGO/Al2O3 nanocomposites in terms of reducing the undesired agglomeration of RGO/Al2O3 nanocomposite flakes to a significant minority and obtaining the uniform coverage of RGO surface with Al2O3 nanoparticles. Our investigations indicate that, despite the high excess of Al2O3 used (95 wt%), the lowest RGO/Al2O3 flake agglomeration and the formation of a uniform layer composed of Al2O3 nanoparticles with the average size of 58 nm occurred only when 5 wt% of graphene oxide was used as a substrate for the deposition of Al2O3 nanoparticles together with triethyl aluminium as an Al2O3 precursor and dry hexane as the reaction environment. The resulting organic precursor was thermally decomposed at 280 °C for 3 h in air atmosphere (R4 reaction pathway). This was confirmed by the high BET-specific surface area (242.4 m2/g) and the high open porosity (0.7 cm3/g) of the obtained RGO(5 wt%)/Al2O3 nanocomposite. This is also the first study with a detailed discussion of the reactions expected to occur during the synthesis of an RGO/Al2O3 nanocomposite.  相似文献   

12.
In this research, ultrasound irradiation as a simple method was used to produce boron nanostructures. Reaction conditions such as boron concentration and sonication time show important roles in the size, morphology and growth process of the final products. The boron nanostructures (nanoparticles and nanorods) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, small-angle X-ray scattering and inductively coupled plasma atomic emission spectroscopy techniques. Primary evaluation of results showed that nanoparticles and nanorods of boron successfully have been prepared with 25–40 and 50–100 nm average particle size, respectively. These nanostructures (nanoparticles and nanorods) were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. Thermochemical decomposition behaviors of treated samples were characterized by thermal gravimetric analysis and differential scanning calorimetry techniques. Also, the kinetic parameters of thermal decomposition processes of pure and treated samples were obtained by nonisothermal methods proposed by Kissinger and Ozawa. However, boron nanoparticles with the smallest average particle size (25–40 nm) have the most significant catalytic effect including the decrease in decomposition temperature of AP + B nanocomposite by 100 °C, increase in the heat of decomposition from 580 to 1354 J g?1 and decrease in activation energy from 207 to 110 kJ mol?1.  相似文献   

13.
Re-use of a catalyst is an important task, which is usually achieved by loading it on easily separable supports such as magnetic substrates. However, we demonstrate here the process of easy and fast catalyst separation from a reaction medium by loading it onto an economically feasible and microscopically high surface substrate of filter paper (FP) made up of cellulose microfibers as catalyst support. To achieve the goal, we coated chitosan (CH) on filter paper (CH-FP) to impart a high affinity of the substrate for metal ion absorption. AgNO3 dissolved in water with a 0.1 M concentration was used as the Ag ion carrier solution, and CH-FP strips with known rectangular dimensions were submerged into it for the metal ion absorption. The metal ion-laden CH-FP strips were dip treated with sodium borohydride (NaBH4) aqueous solution to prepare Ag-nanoparticle loaded CH-FP (Ag/CH-FP). X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the formation of the Ag/CH-FP hybrid. Ag/CH-FP morphology was examined through scanning electron microscopy analysis, which showed the presence of Ag nanoparticles attached to the cellulose microfibers. The prepared Ag/CH-FP was employed as a dip catalyst for the degradation of nitroarene compounds of 2-nitophenol (2-NP) and 4-nitrophenol (4-NP) by NaBH4. Remarkably, the rate constants for 4-NP and 2-NP were 3.9 × 10?3 and 1.7 × 10?3 s?1, respectively. In addition, we discussed the ease of the catalyst retrievability from the reaction mixture and its re-usability.  相似文献   

14.
In this study, paraffin-/ultrasonic-treated diatomite was characterized for use as phase change material (PCM) for thermal energy storage in buildings. The diatomite was treated with ultrasound at various periods of time. The diatomite treated with ultrasound for 60 min (DA-60) was the optimum condition providing the highest surface area without structural degradation. The melting point and latent heat of the paraffin/DA-60 composite PCM were 59 °C and 45.90 J g?1, respectively. The obtained form-stable PCM had good thermal reliability after 500 cycles of thermal cycling test. The thermal performance of PCM was tested by incorporating the paraffin/DA-60 composite PCM into gypsum board. The results showed that the gypsum board containing the paraffin/DA-60 composite PCM had better thermal energy absorption and release characteristics than those of the control sample. The incorporation of paraffin/DA-60 composite PCM into suitable building materials could thus considerably reduce the energy consumption of cooling system in buildings.  相似文献   

15.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

16.
A new unbreakable solid-phase microextraction fiber coating based on polyethylene terephthalate/graphene nanocomposite was developed. The nanocomposite coatings were prepared by an electrospinning technique using a polyethylene terephthalate (PET) polymer solution containing the dispersed graphene on the outer surface of a stainless-steel rod. The applicability of polyethylene terephthalate/graphene nanocomposite coatings was examined by extraction of organochlorine compounds (OCs) including heptachlor epoxide, aldrin, γ-HCH, and β-HCH from aqueous samples in headspace mode. Influential parameters on extraction efficiency such as polymer concentration, the weight ratio of components, the electrospinning time, time and temperature of extraction, the salt concentration, and desorption condition were investigated. Eventually, the developed method was validated by gas chromatography micro electron capture detector (GC-µECD). At the optimum conditions, the intra-day relative standard deviations for the determination of chloro compounds in distilled water spiked at the levels of 400, 800, and 1500 ng L??1 were 1.9–7.3% (n?=?3), the limit of detection is between 5 and 30 ng L??1, and the calibration plots cover the 100 to 5000 ng L??1 range. Inter-day precision values obtained for three replicates measured on different days were in the range of 2.6–9.5% at concentration levels of 400, 800, and 1500 ng L??1. The method was applied to the analysis of (spiked) water samples and relative recoveries were found to range from 81 to 106%.  相似文献   

17.
In this study, the response surface methodology was first applied to optimize the photocatalytic degradation of styrene in aqueous phase under UV/TiO2 system. Twenty experiments were done by adjusting three parameters (styrene concentration, TiO2 dose, and pH) at five levels. Optimal experimental conditions for arbitrary aqueous styrene concentration (115 mg L?1) were found: initial pH 7 and TiO2 loading 2 g L?1 with photocatalytic degradation efficiency of 79.2%. Furthermore, the main degradation intermediate produced was identified by GC/MS. The total organic carbon results revealed that the photocatalysis process could be effectively mineralized. Kinetics of the photocatalytic reaction followed a pseudo-first-order model.  相似文献   

18.
In the article, the thermal oxidative degradation kinetics of pure polypropylene/aluminum trihydroxide (PP/ATH) and PP/ATH/organo Fe-montmorillonite (Fe-OMT) nanocomposites were investigated using Kissinger, Friedman and Flynn–Wall–Ozawa methods. The results showed that thermal oxidative degradation of PP/ATH/Fe-OMT nanocomposites to PP/ATH were complex reaction: the whole process of thermal oxidative degradation were composed with the decomposition of ATH, the cracking and charring of the backbone chains of PP, and the oxidative degradation of char, which the curses of energy mutative with the process of thermal oxidative degradation. The control steps were different in each degradation stage. The activation energy was high in the original degradation stage. It was due to the molecular structure and may closely relate with onset temperature. In the intermediate process, the activation energy was low. In the last stage of the degradation, the activation energy was graveled because the carbon may be oxidized. In the whole process of thermal oxidative degradation, the activation energy of PP/ATH/Fe-OMT nanocomposite was higher than that of PP/ATH.  相似文献   

19.
The stability-indicating LC assay method was developed and validated for quantitative determination of cefcapene pivoxil in the presence of degradation products formed during forced degradation studies. An isocratic RP-HPLC method was developed with a Lichrospher RP-18 (250 mm × 4.6 mm, 5 μm) column and the mobile phase composed of 45 volumes of acetonitrile and 55 volumes of mixture composed of citric acid 10 mmol L?1 and potassium chloride 18 mmol L?1. The flow rate of the mobile phase was 1 mL min?1. Detection wavelength was 270 nm and temperature was 30 °C. Cefcapene pivoxil, similar to other cephalosporins, was subjected to stress conditions of degradation in aqueous solutions including hydrolysis, oxidation, and thermal degradation. The method was validated with regard to linearity, accuracy, precision, selectivity, and robustness. The method was applied successfully for the determination of cefcapene pivoxil during kinetic studies in aqueous solutions (pH and thermal degradation) and in solid state (oxidative, thermal, and radiolytic degradation).  相似文献   

20.
The aim of this research was the simultaneous removal of heavy metal and dye pollutants from water by a clinoptilolite–TiO2 nanocomposite. The nanocomposite was prepared by the synthesis of TiO2 nanoparticles on clinoptilolite. The structure and morphology of the clinoptilolite–TiO2 nanocomposite were studied by XRD, SEM, EDS and FTIR. The TiO2 synthesis and loading on clinoptilolite were confirmed by EDS, XRD and FTIR analysis. The TiO2 particle size was estimated by SEM images and XRD analysis to be less than 80 nm. The photocatalytic performance of the nanocomposite was evaluated for acid orange 7 (AO7) photodegradation under UV light irradiation in the presence of Pb2+. The removal of Pb2+ ions was investigated at the same time and the effect of the initial solution pH, the effect of AO7 and Pb2+ concentration were examined. The results indicated that the nanocomposite can simultaneously remove 77% of metal and 85% of dye from wastewater containing 500 ppm Pb2+ and 40 ppm AO7. The removal of Pb2+ ions was investigated at the same time and the effect of the initial solution pH, the effect of AO7 and Pb2+ concentration were examined. The results indicated that the nanocomposite can be used for the simultaneous photodegradation of AO7 and the removal of Pb2+ from water several times without a noticeable reduction in their efficiency. Also, the presence of the dye molecules led to a 10% increase in the removal efficiency of Pb2+ compared to when just Pb2+ was present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号