首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Polymerization‐induced phase separation from an all‐monomeric system by direct copolymerization offers the formation of heterogeneous polymeric structures without reliance on polymer blends, block copolymers, or interpenetrating polymer networks. This study examines the potential for the formation of compositional heterogeneity in copolymer networks obtained by free‐radical photopolymerizations of initially homogeneous mixtures of bisphenol A glycidyl dimethacrylate and isodecyl methacrylate as the comonomer ratios and polymerization conditions are varied. Comonomer proportions that control thermodynamic stability prior to (as determined by cloud point measurements) and during [as determined by turbidity measurements coupled with near‐infrared (IR) spectroscopy] polymerization were shown to be a more influential factor on phase separation than irradiance‐imposed kinetic control of the photopolymerization process. Through photorheometry coupled with near‐IR and ultraviolet–visible (UV–Vis), the onset of phase separation was shown to occur at very low conversions and always prior to gelation (as estimated by the crossover of G′/G″). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1796–1806  相似文献   

2.
Proton T data obtained by CP/MAS solid-state 13C NMR at 100.56 MHz for different polyacrylate networks were correlated with their mechanical properties in order to determine the best mixture in terms of stress-at-break (σ), Young's modulus of elasticity (Y), and homogeneity of the monomers that are forming the solid network. The mixtures were formed by the photopolymerization of 40% trimethylolpropane triacrylate (TMPTA), 40% dipentaerythritol pentaacrylate (DPHPA), and 20% of a monomer from a series of poly(ethylene glycol) and poly(ethylene) dimethacrylate. Proton T's in networks were not quite averaged to a single value by spin diffusion as in polymer blends, indicating extensive intermixing of TMPTA and DPHPA in forming the network, but with phase separation between the dimethacrylate homopolymer and the rest of the network that is dependent on the laser power. The stress-at-break and the Young's modulus of elasticity were determined for each of the mixtures at different values of the laser power used for the polymerization. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The isothermal and non-isothermal crystallization kinetics of pure poly(ε−caprolactone) (PCL) and its blends with crosslinked tung oil were investigated as a function of composition, crystallization temperature, and heating rate using differential scanning calorimetric (DSC). The PCL/tung oil semi-interpenetrating polymer networks of different compositions were prepared via cationic polymerization of tung oil in the presence of homogenous solutions of PCL. This unique and relatively new in-situ polymerization and compatibilization blending technique created nano/micro-scale morphologies that cannot be obtained with the traditional melt-processing and/or solvent casting methods. Blends with different miscibility, phase behaviors, and morphologies (miscible, partially miscible, and immiscible) were observed as a function of composition with a constant concentration of boron trifluoride diethyl etherate (BFE) cationic initiator. The morphology of the semi-interpenetrating polymer networks was performed using scanning electron microscopy (SEM). Miscible blends with a single Tg for PCL ≤ 10 wt.%. were observed. While, on the other hand, partially miscible blends with two distinct Tgs and nanoscale morphologies and average particle sizes as small as 100 nm were observed for blends with 20 ≤ PCL wt.% ≤ 30. Immiscible blends with microscale highly interconnected, co-continuous two-phase morphology and two distinct Tgs were detected for 50 wt.% PCL. Both isothermal and non-isothermal crystallization kinetics were strongly influenced by the different miscibility and morphology of the blends. The isothermal and non-isothermal crystallization kinetics of PCL/tung oil blends were analyzed on the basis of Avrami and modified Avrami approaches, respectively. A substantial decrease in the isothermal (longer half time) and non-isothermal (Tm shifted to lower temperature) crystallization kinetics was observed as the concentration of PCL increased in the blends up to 30 wt.% due to the partially miscibility of the blends in this composition range. In a contrast, for 50 wt.% PCL blend, a considerable increase in the crystallization kinetics (isothermal and non-isothermal) was detected due to the highly interconnected, co-continuous two-phase morphology.  相似文献   

4.

Photo-induced polymerization of 2-hydroxyethyl methacrylate (HEMA) in the presence of various amounts of nonreactive polyhedral oligomeric silsesquioxanes (POSS) functionalized with glycidyl, fluoroalkyl or hydroxyl groups was investigated. HEMA/POSS systems were characterized before, during and after the photocuring, with the special emphasis on the photopolymerization kinetics (measured by isothermal differential scanning calorimetry). It was found that the introduction of tested POSS derivatives into HEMA strongly affects the photopolymerization kinetics (enhancement of the gel effect, increase in the polymerization rate and conversion), mainly due to the increase in the viscosity of the initial formulation which leads to a reduction in the termination rate coefficient. However, interactions HEMA–POSS cause also a slight increase in the propagation rate coefficient. The behavior of the polymerization rate coefficients during the reaction suggests that POSS cages may mitigate the inhibitory effect of viscosity on the diffusion of macroradicals by exerting a slip effect. The materials produced are microcomposites due to the partial phase separation occurring during the curing process. Small amounts of added POSS modifiers cause plasticization of the material; at higher loads, POSS domains behave like nanofiller aggregates that increase the glass temperature. The nonreactive POSS have very little effect on thermal decomposition of the poly-HEMA matrix, which can result in a degree from the phase separation; the latter is also the main cause of the deterioration of the mechanical properties of composites compared to a pure polymer matrix.

  相似文献   

5.
In this article we described our new approach to the polymer monolith with its morphology tailored for HPLC application to small solutes such as drug candidates. We prepared polymer monoliths based on glycerin 1,3‐dimethacrylate, GDMA with a bicontinuous structure by in situ photoinitiated free radical polymerization (UV irradiation at 365 nm). Our photopolymerization was carried out with a monodispese ultra high molecular weight polystyrene solution in chlorobenzene uniquely formulated as a porogen. The poly‐GDMA monoliths in bulk, rod and capillary thus prepared showed a bicontinuous network‐like structure featured by their fine skeletal thickness nearly in sub μm size. This monolithic structure was considered as a time‐evolved morphology frozen by UV‐irradiation via viscoelastic phase separation induced by the said porogenic polystyrene solution. According to our μHPLC measurement with acetophenone as a model solute, the UV prepared poly‐GDMA capillary demonstrated a much shaper elution profile affording higher column efficiency and permeability as compared with the thermally prepared capillary of the same bore size. Our investigation showed experimentally that poly‐GDMA monoliths with a well‐defined bicontinuous structure could be prepared reproducibly by photoinitiated radical polymerization via viscoelastic phase separation using the said unique porogen. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4651–4673, 2008  相似文献   

6.
The influence of temperature on the photopolymerization kinetics of oligo(methylene) oxide and oligo(ethylene oxide) dimethacrylate series has been investigated by isothermal DSC. The DSC curves showed a rapid rise in rate due to the Trommsdorff effect, and then a slow decline. A shoulder, apparent on many of the DSC curves at low conversions, became more prominent when the cure temperature was lowered. The kinetics were relatively insensitive to the dimethacrylate structure in the early stages of the reaction, but became more dependent as the reaction proceeded. A previously derived mathematical model, which allows for the influence of diffusion on the rate constants, was used to predict the kinetics. The dependence of the maximum rate and conversion on the curing temperature were adequately described by the model. The experimentally observed shoulder on the rate curve was also predicated as was the evolution of the rate/time curves with curing temperature. Similar predictions were found when a nonsteady state version of the model was used. The radiation intensity exponent varied from 0.3 to 0.6 possibly due to chain-length effects and pseudo-first order termination, respectively. The final degree of conversion increased with curing temperature (Tcure) and was correlated with the flexibility of the dimethacrylate. These data were fitted to a theoretical expression relating the final conversion to the resin Tg and to the Tcure. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Bisphenol-A diglycidyl ether dimethacrylate was blended with styrene at varying concentrations and this model vinyl ester resin (VER) was compared with two commercial VERs. The VERs were characterized using gravimetry, FTIR spectroscopy, NMR spectroscopy, differential scanning calorimetry (DSC) and DMTA. NMR spectroscopy differentiated between a novolac epoxy-based multimethacrylate oligomer and the two bisphenol-A epoxy-based dimethacrylate oligomers. Reaction kinetics were studied using scanning and isothermal DSC and isothermal FTIR spectroscopy using benzoyl peroxide as the thermal initiator. The presence of oxygen was found to inhibit significantly the polymerization. Increased initiator concentration raised the rate of isothermal polymerization, but did not affect the final conversion while increased styrene concentration reduced the polymerization rate constant and increased the total conversion. This was interpreted in terms of the variations in the termination rate and the stability of the styryl radical on the cure rate and the effect of vitrification on the extent of cure. From measurements of the dynamic mechanical properties as a function of temperature, the breadth of the glass transition tan δ curve and the magnitude of the rubbery modulus was found to increase while the tan δ maximum decreased with increased crosslink density. The Tg, as measured by DSC, and the temperature of the tan δ maximum, as measured by DMTA, were not significantly affected by the styrene content in the resin per se, but were dependent on the combined effects of composition and crosslink density of the network.  相似文献   

8.
 The roles of reaction inhomogeneity in phase separation of polymer mixtures were described and summarized via two examples: photocross-link of polymer mixtures in the bulk state and photopolymerization of monomer in the liquid state. The reaction kinetics, the reaction-induced elastic strain and the phase separation kinetics were monitored respectively by UV-Vis spectroscopy, Mach-Zehnder interferometry and laser-scanning confocal microscopy. It was found that phase separation in the bulk state was strongly influenced by the elastic strain associated with the intrinsic inhomogeneity of the reaction, whereas the autocatalytic behavior of the polymerization plays an important role in the resulting morphology in the liquid state. These experimental results are discussed in conjunction with the morphology control of polymer mixtures by using chemical reactions.  相似文献   

9.
Porous polymer monoliths were prepared by UV- or EB-induced polymerization of hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) as network precursors dissolved in porogenic solvent mixtures composed of methanol and n-hexane. The fluidic properties and the pressure resistance of porous monoliths synthesized into 1 mm i.d. capillaries and in 100 μm-wide microchannels were investigated. The influence of photopolymerization time (or electron beam dose) and monomer content on flow properties is discussed on the basis of morphological features. The two types of radiation can be used to achieve the in situ fabrication of monolith inside microsystems. The permeability of the porous monoliths can be adjusted by tuning compositional and processing parameters.  相似文献   

10.
The kinetics of the polymerization induced phase separation of liquid crystal (LC)/monomer mixture has been investigated by means of depolarized light intensity technique and polarized light microscope (PLM). To examine the effect of the electric field, a DC electric field was applied across the mixtures during the phase separation process. The kinetic study indicates that the phase separation process is accelerated when the electric field is applied. The morphologies of the formed polymer dispersed liquid crystal (PDLC) films were observed by PLM. The electric field applied during the phase separation process yields the PDLC with small LC domains and fine morphologies. The clearing temperature (TNI) of the formed PDLC films was measured by the PLM and it is found that the TNI increases with the applied electric field intensity.  相似文献   

11.
The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single Tg, indicating these blends are miscible. The interaction parameter B's were determined to be –14 J cm–3, –15 J cm–3 respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
Xiaoyi Wei  Li Qi  Gengliang Yang 《Talanta》2009,79(3):739-1198
A novel modified monolithic column with pH-responsive polymer chains was prepared by grafting methacrylic acid onto the poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith. The grafting polymerization was achieved in an in situ manner which was performed by pumping methacrylic acid directly through an acidic hydrolysis monolithic column using potassium peroxydisulfate initiated free-radical polymerization. The grafted monolithic column was demonstrated to be the pH-responsive to the pore structure and the chromatographic characterization. The permeability of the column and the retention factors of five benzene homologues decreased due to the conformational changes of the polymer chains when the pH of mobile phase increased from 4.5 to 7.5. Furthermore, the modified monolithic column was used as the pH-responsive stationary phase and exhibited an excellent separation of four basic proteins.  相似文献   

13.
Branched poly(methyl methacrylates) containing covalently and noncovalently attached fullerene C60 are synthesized and characterized by IR and UV spectroscopy. The basic physicochemical characteristics of the branched poly(methyl methacrylate) comprising covalently attached fullerene and the non-functionalized branched polymer of the same composition are compared. The effect of fullerene-containing branched poly(methyl methacrylates) on the kinetics of the crosslinking radical polymerization of 1,6-hexanediol dimethacrylate and on the structural-physical (mechanical, thermomechanical, and diffusion-sorption) properties of the resulting polymers is examined. The role of fullerene attached to the branched poly(methyl methacrylate) as an inhibitor of the crosslinking radical polymerization of dimethacrylate and as a modifier of the structure and properties of the polymers is ascertained.  相似文献   

14.
Highly crosslinked polymers have been obtained by photopolymerization of multiacrylate macromers under intense u.v. or laser irradiation. The marked inhibitory effect of O2 was quantitatively evaluated by a kinetic study of these ultra-fast reactions by i.r. spectroscopy. The rate of polmerization (Rp) and the amount of residual unsaturation in the cured polymer were shown to depend primarily on the nature of the macromer chain and on the functionality of the monomer used as diluent. Despite the high rate of initiation, polymerization develops effectively, with large quantum yields: θp = 8300 polymerized units per photon absorbed for irradiations in N2. The linear relationship between Rp and light-intensity strongly suggests a polymerization mechanism based on monomolecular termination.  相似文献   

15.
The phase‐separation kinetics of liquid‐crystalline polymer/flexible polymer blends was studied by the coupled time‐dependent Ginzberg–Landau equations for compositional order parameter ? and orientational order parameter Sij. The computer simulations of phase‐separated structures of the blends were performed by means of the cell dynamical system in two dimensions. The compositional ordering processes of phase separation are demonstrated by the time evolution of ?. The influence of orientational ordering on compositional ordering is discussed. The small‐angle light scattering patterns are numerically reproduced by means of the optical Fourier transformation of spatial variation of the polarizability tensor αij, and the azimuthal dependence of the scattering intensity distribution is interpreted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2915–2921, 2001  相似文献   

16.
X-ray diffraction analysis of pyrocatechol and hydroquinone dimethacrylates (T m = 18 and 86–88°C, respectively) shows that the oligomer molecules within crystals are packed in stacks where the methacrylate fragments of neighboring molecules are parallel to each other. The minimum distances between the centers of double bonds of adjacent methacrylate fragments in crystals of pyrocatechol and hydroquinone dimethacrylates are 4.621(3) and 4.269(4) Å. The curves showing the reduced rate of photopolymerization of oligomer melts versus conversion (9,10-phenanthrenequinone used as the initiator) display a maximum at conversions of 1.5–3.0%. The limiting conversion in photopolymerization of molten pyrocatechol dimethacrylate at 25 and 40°C is 20%; for hydroquinone dimethacrylate at 95°C, it is approximately 10%. As the temperature rises from 25 to 40°C, the maximum reduced rate of photopolymerization of pyrocatechol dimethacrylate increases by a factor of 1.4.  相似文献   

17.
The roles of reaction inhomogeneity in phase separation of polymer mixtures were described and summarized via two examples:photocross-link of polymer mixtures in the bulk state and photopolymerization of monomer in the liquid state. The reaction kinetics,the reaction-induced elastic strain and the phase separation kinetics were monitored respectively by UV-Vis spectroscopy,Mach-Zehnder interferometry and laser-scanning confocal microscopy.It was found that phase separation in the bulk state was strongly ...  相似文献   

18.
Star‐shaped oligo[(D ,L ‐lactide)‐co‐ε‐caprolactone]s (PCLA) with various number average molecular weights were synthesized via ring‐opening polymerization of D ,L ‐lactide (DLLA) and ε‐caprolactone (CL) with organic Sn as catalyst and pentaerythritol as an initiator. The elastic amorphous interpenetrating polymer networks (IPNs) of polyesterurethane/poly(ethylene glycol) dimethacrylate (PEGDMA) were synthesized in situ by UV‐photopolymerization of PEGDMA and thermal polymerization of PCLA with isophorone diisocyanate (IPDI). IPNs are transparent soft materials and the gel content of the IPNs is exceeding 87%. They are rubbery when PEGDMA content is above 10% at room temperature. IPNs show good shape‐memory properties. IPNs recover quickly its permanent form in 10 sec when the environment temperature is above its glass transition temperature (Tg). IPNs have only one single Tg between the Tg of PEGDMA and polyesterurethane. The strain recovery rate (Rr) and the strain fixity rate (Rf) are above 90%. No characteristic peaks of PEG crystallites in X‐ray diffraction pattern (XRD) demonstrate that they are amorphous polymer networks. The wettability, degradation rate, mechanical properties, and Tg of the IPNs could be conveniently adjusted by changing PEGDMA content in IPNs. The soft IPNs are promising suitable as potential soft substrates with tailored mechanical properties for potential clinical or medical use. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The kinetics of thiol–enol photopolymerization of a hybrid composition based on a tetraacrylate monomer and a thiol-siloxane oligomer was studied with the use of a holographic recording of elementary transmission phase gratings. The degrees of conversion of double bonds in the tetraacrylate monomer after the polymerization in air and in an inert atmosphere of SF6 were measured via IR spectroscopy. It is shown that the use of the thiol-siloxane oligomer efficiently suppresses oxygen inhibition of the photopolymerization. When the photoinitiator concentration is increased to more than 10–2 mol/L, the photopolymerization rate levels off. An increase in the thiol-siloxane oligomer concentration leads to an extremal dependence of the photopolymerization rate on the oligomer concentration; the maximum rate is reached at an oligomer concentration of about 0.07 mol/L. The kinetic scheme of photopolymerization in the hybrid photopolymer composition was analyzed, and an analytical expression for the photopolymerization rate was obtained. The correlation between the kinetic constants of the thiol–enol photopolymerization was evaluated on the basis of the obtained parameters of the kinetic model.  相似文献   

20.
The poly(hydroxy ether of bisphenol A)‐based blends containing poly(acrylontrile‐co‐styrene) (SAN) were prepared through in situ polymerization, i.e., the melt polymerization between the diglycidy ether of bisphenol A (DGEBA) and bisphenol A in the presence of poly(acrylontrile‐co‐styrene) (SAN). The polymerization reaction started from the initial homogeneous ternary mixture of SAN/DGEBA/bisphenol A, and the phenoxy/SAN blends with SAN content up to 20 wt % were obtained. Both the solubility behavior and Fourier transform infrared (FTIR) spectroscopy studies demonstrate that no intercomponent reaction occurred in the reactive blend system. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscopy (SEM) were employed to characterize the phase structure of the as‐polymerized blends. All the blends display the separate glass transition temperatures (Tg's); i.e., the blends were phase‐separated. The morphological observation showed that all the blends exhibited well‐distributed phase‐separated morphology. For the blends with SAN content less than 15 wt %, very fine SAN spherical particles (1–3 μmm in diameter) were uniformly dispersed in a continuous matrix of phenoxy and the fine morphology was formed through phase separation induced by polymerization. Mechanical tests show that the blends containing 5–15 wt % SAN displayed a substantial improvement of tensile properties and Izod impact strength, which were in marked contrast to those of the materials prepared via conventional methods. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 525–532, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号