首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coumarilate (coum?) complexes of CoII(1), NiII(2) CuII(3) and ZnII(4) were synthesized and characterized by elemental analysis, magnetic susceptibility, solid-state UV–Vis, FTIR spectra, thermoanalytical TG–DTG/DTA and single-crystal X-ray diffraction methods. It was found that all of the complex structures have 2 mol (coum?) ligand bonded as monoanionic monodentate in the structures of 1 and 2 while they were coordinated to metal cations as monoanionic bidentate in the complexes 3 and 4. There was not any hydrate water in the metal complexes. The complexes of 1 and 2 have four moles of aqua ligand, and the other complexes have two moles. Thermal decomposition of each complex starts with dehydration, and then the decomposition of organic parts goes. The thermal dehydration of the complexes takes place in one (for the compounds of 2, 3, 4) or two (for the compound 1) steps. The decomposition mechanism and the thermal stability of the complexes under investigation were determined on the basis of their structures. Metal oxides were obtained as the final decomposition product.  相似文献   

2.
Coordination complexes of transition metal cations (CoII, NiII, CuII and ZnII) containing coumarilate and N,N′-diethylnicotinamide were synthesized. The structural characterization and thermal behaviour analysis of novel samples synthesized were conducted through elemental analysis, magnetic susceptibility, solid-state UV–Vis, direct and injection probe mass spectra, FTIR spectra, thermoanalytic TG-DTG/DTA and single crystal X-ray diffraction methods. The structural details of single crystals of [Co(dena)2(H2O)4](coum)2 (I) and [Cu(coum)2(dena)2(H2O)2] (III) complexes were resolved completely. Moreover, the results of analysis obtained for [Ni(coum)2(dena)2(H2O)2] (II) and [Zn(dena)2(H2O)4](coum)2 (IV) complexes were interpreted considering the samples with crystal structures defined and made assumptions about the structural details. It was determined that the complex of CoII metal cation has salt-type structure and the coordination number of metal is accomplished to six as the sum of 4 mol of water and also 2 mol of N,N′-diethylnicotinamide ligands in trans position located within the coordination sphere. It was observed that 2 mol of coumarilate anions are located outside the coordination sphere and have stabilized to the charge (2+) of metal. The CuII complex has totally molecular structure, and the coordination sphere of metal cation was 6 as the sum of 2 mol of water, 2 mol of N,N′-diethylnicotinamide and 2 mol of monoanionic monodentate coumarilate ligands. All ligands have been located in –trans position. The geometry of both complex structures is distorted octahedral. It is assumed that the NiII complex structure is isostructural with CuII complex structure and also does ZnII complex with CoII structure. It was determined that the decomposition products obtained from thermal analysis are the oxides of related metal cations.  相似文献   

3.
A new series of metal complexes of Ti(IV), V(IV), Y(III), Zr(IV), Ce(IV) and U(VI) with levofloxacin (Levo) were synthesized and characterized by elemental analysis, molar conductivity, magnetic moment measurements, UV–Vis, FT-IR and 1H NMR, XRD as well as TG-DTG techniques. The data indicated that levofloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The thermal dehydration and decomposition of the complexes were studied kinetically using Coats–Redfern and Horowitz–Metzger methods, and the thermodynamic data reflected the thermal stability for all complexes. The calculated bond length and the bond stretching force constant, F(U=O), values for UO2 bond are 1.86 Å and 690.67 N m?1. The biological activities of the levofloxacin, meta-salts and their metal complexes were assayed against different bacterial and fungal species as well as their effect on degradation of calf thymus DNA.  相似文献   

4.
The coordination chemistry of pyrazole and three of its methyl derivatives with the chloride and nitrate salts of copper(II) under strictly controlled reaction conditions is systematically explored to gain a better understanding of the effect of counterion coordination strength and ligand identity on the structure and electronic absorption spectra of their resulting complexes. Despite the initial 2 : 1 ligand to metal ratio in water, copper(II) nitrate forms exclusively 4 : 1 ligand to metal complexes while copper(II) chloride forms a 4 : 1 ligand to metal complex only with pyrazole, with the methyl derivatives forming 2 : 1 ligand to metal complexes, as determined by single-crystal X-ray diffraction (XRD). This is attributed to a combination of ligand sterics and stronger coordination of chloride relative to nitrate. Electronic absorption spectroscopy in both water and methanol reveals a surprisingly strong effect of the pyrazole methyl position on the CuII d–d transition, with 4-methylpyrazole producing a higher energy d–d transition relative to the other ligands studied. In addition, the number of methyl groups plays a determining role in the energy of the pz π→CuII dxy LMCT band, lowering the transition energy as more methyl groups are added.  相似文献   

5.
N,N-diethylnicotinamide-acetylsalicylato complexes of Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and investigated by elemental analysis, magnetic susceptibility, solid state UV–Vis, direct injection probe mass spectra, FTIR spectra and thermoanalytic TG-DTG methods. The complexes contain two waters, two acetylsalicylate (asa) and two N,N-diethylnicotinamide (dena) ligands per formula unit. The acetylsalicylate and N,N-diethylnicotinamide are monodentate through acidic oxygen and nitrogen of pyridine ring. Decomposition of each complex starts with dehydration then decomposition of N,N-diethylnicotinamide and acetylsalicylate, respectively. The thermal dehydration of the complexes takes place in one or two steps. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The final decomposition products are found to be metal oxides.  相似文献   

6.
A detailed thermal analysis of iron and cobalt surfactant complexes of the type [M(CH3COO)4]2?[C12H25NH3 +]2 has been carried out using Thermogravimetric (TG) analysis at different heating rates (i.e., 5, 10, 15, and 20 °C min?1). It has been observed that iron complex decomposes by a different mechanism compared to other transition metal complexes. Metal is the final product instead of metal oxide. Combining the results from our previous study, first row transition metal complexes exhibit an order of stability in agreement with the famous Irving Williams series, i.e., the apparent activation energy, E for thermal decomposition varies as: E Fe > E Co < E Ni < E Cu > E Zn (exception being iron because of different decomposition mechanism). Thermal decomposition parameters have been measured and compared using the multiple heating rate method of Flynn–Wall–Ozawa. Further, molecular modeling calculations have been carried out to compare the experimental TG data with theoretical computations for the synthesized metal surfactant complexes. Minimum energy optimized structures for the complexes have been obtained using Gaussian software.  相似文献   

7.
Two novel dendritic poly(amido-amine) (PAMAM) bridged salicylaldimine ligands were synthesized by Schiff base reaction using 1.0 generation dendritic PAMAM as bridged groups. The cobalt complex with 1,4-butanediamine as core (C1) and the cobalt complex with 1,6-hexanediamine as core (C2) based on dendritic PAMAM bridged salicylaldimine ligands were prepared by metallic coordination reaction, respectively. The structures of the ligands and the dendritic cobalt complexes were characterized by fourier transform infrared (FTIR), ultraviolet spectra (UV), hydrogen nuclear magnetic resonance (1H NMR) and electrospray ionization mass spectra (ESI-MS). The complexes C1 and C2 were evaluated as catalyst precursors for ethylene oligomerization after being activated with methylaluminoxane (MAO), diethylaluminum chloride (Et2AlCl), ethylaluminium dichloride (EtAlCl2) and ethylaluminum sesquichloride (EASC). The dendritic cobalt complexes exhibited the highest activity and selectivity for high carbon oligomers with EASC as activator. Under the conditions of 1.0 MPa, 25°C and Al/Co molar ratio 1500, the catalytic activity and selectivity for C10–C20 using C1 were 3.44×106 g·(mol Co·h)?1 and 76.53% after activation with EASC, and the catalytic activity and selectivity for C10–C20 using C2 were 3.42×106 g·(mol Co·h)?1 and 84.50%, respectively.  相似文献   

8.
New complexes ML(CNS)·nH2O [M = Ni, n = 0.5; M = Cu, n = 4.5; M = Zn, n = 0.5, HL: 6-mercapto-(1,4,8,11-tetraazaundecanyl)-6-carboxylic acid)] have been synthesised, chemical analysed, and characterised by different spectroscopic techniques (IR, UV–Vis–NIR, 1H NMR, EPR, ESI–MS), and magnetic measurements. Based on the IR spectra a dinuclear structure with the 1,3-CSN coordination was proposed for Ni(II) and Cu(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. According to TG, DTG and DTA curves the thermal transformations are complex processes, including dehydration, Mannich base oxidative degradation and thiocyanate decomposition. The final product of decomposition is the most stable metallic oxide, as XRD data indicates. The new complexes were also screened for their microbicidal and antibiofilm properties.  相似文献   

9.
Four novel metal(II) complexes, Ni(L)2, Co(L)2, Cu(L)2, and Zn(L)2 (L = 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-1,3-diethyl-2-thioxo-dihydropyrimidine-4,6(1H,5H)-dione), were synthesized using the procedure of diazotization, coupling and metallization. Their structures were identified by elemental analyses, 1H NMR, ESI-MS and FT-IR spectra. The effect of different central metal(II) ions on absorption bands of the metal(II) complexes was researched. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Furthermore, the thermodynamic parameters, such as activation energy (E*), enthalpy (?H*), entropy (?S*) and free energy of the decomposition (?G*) are calculated from the TG curves applying Coats–Redfern method. The results show that the metal(II) complexes have suitable electronic absorption spectra with blue-violet light absorption at about 350–450 nm, high thermal stability with sharp thermal decomposition thresholds.  相似文献   

10.
New dihydrazinium divalent transition metal trimellitate hydrates of empirical formula (N2H5)2M(Html)2·nH2O, where n = 1 for M = Co or Ni, and n = 2 for M = Mn, Zn, or Cd (H3tml = trimellitic acid), and monohydrazinium cadmium trimellitate, [(N2H5)Cd(Html)1.5·2H2O] have been prepared and characterized by physico-chemical methods. Electronic spectroscopic, and magnetic moment data suggest that Co and Ni complexes adopt an octahedral geometry. The IR spectra confirm the presence of monodentate carboxylate anion (Δν = νasy(COO?) ? νsym(COO?) > 190 cm?1) and coordinated N2H5 + ion (νN–N 1015 ? 990 cm?1) in all the complexes. All the complexes undergo endothermic decomposition eliminating CO2 in the temperature region 200–250 °C, followed by exothermic decomposition (in the range of 500–570 °C) of organic moiety to give the respective metal carbonate as the end products except nickel and cobalt complexes, which leave respective metal oxides. X-ray powder diffraction patterns reveal that Ni and Co complexes are isomorphous as are those of, Zn(II) and Cd(II) of the type, (N2H5)2M(Html)2·2H2O.  相似文献   

11.
Two new naphthoate-based lead(II) complexes, [Pb(NA)2(2,2’-Bipy)] (I) and [Pb2(NA)4(4,4’- Bipy)] (II) (NA–= 1-naphthoate, 2,2’-Bipy = 2,2’-bipyridine, and 4,4’-Bipy = 4,4’-bipyridine) (CIF files CCDC nos. 664900 (I), 664899 (II)) have been hydrothermally synthesized by varying the N-heterocyclic coligands. Structural analyses reveal that the two complexes possess different limited-nuclear motifs, the former one owns mononuclear unit and the last complex exhibits centrosymmetric binuclear motif bridged by 4,4’-Bipy connector. The coordination numbers of Pb(II) metal centers in I and II are four and five, respectively. The NA anions in both complexes show the same binding modes, it is obvious that the bipyridyl coligands in the present mixed-ligands system are responsible for the dissociation or dimerization of mononuclear structural units and the binding numbers of the metal ion. In both complexes, the 6s lone pair of electrons of Pb2+ has a stereochemistry activity resulting the distribution of the Pb–O and Pb–N bonds in a hemisphere. Furthermore, both of the two compounds are linked to 2D network by intermolecular C–H···O hydrogen bonding and π···π stacking interactions, exhibiting strong fluorescent emissions resulting from the NA?-based intraligand charge transfer at room temperature, which can be hopefully used as fluorescent materials.  相似文献   

12.
Solid-phase thermal decomposition of polynuclear NiII and CoII pivalate complexes was studied by differential scanning calorimetry and thermogravimetry. The decomposition of the polynuclear (from bi-to hexanuclear) CoII carboxylate complexes is accompanied by aggregation to form a volatile octanuclear complex. Thermolysis of the polynuclear NiII carboxylates results in their destructure, and the phase composition of the decomposition products is determined by the nature of coordinated ligands. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 250—260, February, 2006.  相似文献   

13.
New copper (II) complexes of Schiff bases with 1,2-di(imino-2-aminomethylpyridil)ethane with the general composition CuLX m (H2O) x , [L = Schiff base, X = Cl?, Br?, NO3 ?, ClO4 ?, CH3COO?, m = 2; X = SO4 2?, m = 1] were prepared by template synthesis. The complexes were characterized by elemental analysis, conductivity measurements, magnetic moments, IR, UV–VIS and EPR spectra. The thermal behavior of complexes was studied using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Infrared spectra of all complexes are in good agreement with the coordination of a neutral tetradentate N4 ligand to the cooper (II) through azomethinic and pyridinic nitrogen. Magnetic, EPR and electronic spectral studies show a monomeric distorted octahedral geometry for all Cu(II) complexes. Conductance measurements suggest the non-electrolytic nature of the compounds, except for copper (II) nitrate and perchlorate complexes which are 1:2 electrolytes. Heats of decomposition, ΔH, associated with the exothermal effects were also determined.  相似文献   

14.
Three half-sandwich ruthenium complexes [Ru(p-cymene)LCl] containing salicylbenzoxazole ligands [LH = 2-(5-methyl-benzoxazol-2-yl)-4-methyl-phenol (2a), LH = 2-(5-methyl-benzoxazol-2-yl)-4-chloro-phenol (2b), and LH = 2-(5-methyl-benzoxazol-2-yl)-4-bromo-phenol (2c)] were synthesized and characterized. All half-sandwich ruthenium complexes were fully characterized by 1H and 13C NMR spectra, MS, elemental analyses, and UV–vis as well as cyclic voltammetry (CV). The molecular structures of 2a, 2b, and 2c were confirmed by single-crystal X-ray diffraction. Single-crystal X-ray structures show that the synthesized ruthenium complexes are three-legged piano-stools with a six-membered metallocycle formed by coordination of the bidentate salicylbenzoxazole ligands to the metal centers. Data from CV and UV–vis absorption of the ruthenium complexes indicated that by changing the substituent on the para position of (donating or withdraw group) the salicylbenzoxazole ligands, minor changes in redox and electronic properties of the ruthenium complexes were observed.  相似文献   

15.
Coordination compounds of MnII, CuII, FeIII and ZnII ions with 4-acetylpyridine nicotinoylhydrazone (4-APNH) were synthesized and characterized by elemental analyses, molar conductivity, magnetic moments, i.r., u.v./vis., m.s., 1H-n.m.r. and thermal analyses. I.r. spectra show that the ligand can act either in the enol form as monovalent bidentate or in the keto form as neutral bidentate depending on the metal salt used. Octahedral structures are proposed for Fe complex and square – planar for the Cu complex, while tetrahedral structures were suggested for Zn and Mn complexes on the basis of magnetic and spectral evidences. Semi-empirical calculations ZINDO/1 have been used to study the molecular geometry and the harmonic vibrational spectra with the purpose to assist the experimental assignment of the complexes. In memory of the late Professor Dr. Abdel Hamid M. Shallaby 2/5/2006  相似文献   

16.
The complexes [Ni(L1)(pyc)2]·2H2O (1) (L1 = C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; Hpyc = pyrazinecarboxylic acid) and [Cu(L2)(H-cpdc)] (2) (L2 = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane; H2-cpdc = cyclopropanedicarboxylic acid) have been synthesized and structurally characterized. The crystal structure of complex 1 shows a distorted octahedral coordination geometry around the nickel(II) center, with four secondary amines in the equatorial positions and two nitrogen atoms of the pyc? ligands in the trans positions. In complex 2, the coordination environment around the copper(II) center is a Jahn–Teller distorted octahedron with four Cu–N bonds and two axial Cu–O bonds. The electronic spectra, electrochemical and TGA behavior of the complexes are significantly affected by the nature of the axial pyc? and H-cpdc? ligands.  相似文献   

17.
Monometallic trivalent complexes of iron were synthesized by reaction between N, O type donor ligands (L) or (L′) and metal salt in a 1:2 (metal:ligand) molar ratio. Structure and composition of metal complexes were evaluated by elemental analysis, conductance measurements, magnetic moment measurements, and various spectroscopic studies viz. FTIR, UV–visible, and ESI–MS. Analytical and molar conductance data are consistent with the formulation of complexes as [Fe(L)2X2]·X and [Fe(L′)2X2]·X (where; L = Hydrazine carboxylic acid ethyl ester, L′ = Hydrazine carboxylic acid tert-butyl ester and X = Cl?, Br? or NO3 ?) due to their 1:1 electrolytic nature. IR spectral data revealed bi-dentate coordination behavior of ligands. An octahedral geometry may be assigned for metal complexes on the basis of electronic absorption data and magnetic moment parameters. The compounds were evaluated for their biological activity by in vitro antimicrobial screening against bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhi and fungi Candida parapsilosis and Saccharomyces cerevisiae. The results indicate that metal complexes exhibit more activity than free ligands against studied microbes.  相似文献   

18.
The solid-state thermal decomposition of the tetrabridged dinuclear MnII, FeII, CoII, NiII, and CuII pivalate complexes with apical α-substituted pyridine ligands containing different substituents (2,3-dimethylpyridine or quinoline) was studied by differential scanning calorimetry and thermogravimetry. The decomposition of the CoII complexes is accompanied by the aggregation to form the volatile octanuclear complex Co84-O)2n-OOCCMe3)12, where n = 2 or 3, whereas the thermolysis of the MnII, FeII, NiII, and CuII complexes is accompanied by the degradation of the starting compounds, the phase composition of the decomposition products being substantially dependent on the nature of metal and the apical organic ligand. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1650–1659, September, 2007.  相似文献   

19.
The formation of binary and ternary complexes of the divalent transition metal ions CuII, NiII, ZnII, and CoII with some triazoles [1,2,4-triazole (TRZ), 3-mercapto-1,2,4-triazole, and 3-amino-1,2,4-triazole], and the biologically important aliphatic dicarboxylic acids adipic, succinic, malic, malonic, maleic, tartaric, and oxalic acid, was investigated in aqueous solutions using the potentiometric technique at 25 °C and I = 0.10 mol·dm?3 NaNO3. The formation of 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes was inferred from the corresponding titration curves. The formation of ternary complexes occurs in a stepwise manner with the carboxylic acids acting as primary ligands. The ionization constants (pK a) of the investigated ligands were redetermined and used for determining the stability constants of the binary and ternary complexes formed in solution. The order of stability of the ternary complexes was investigated in terms of the nature of the triazole, carboxylic acid and metal ion used. The ?log10 K values, percent relative stabilization, and log10 X for the ternary complexes have been evaluated and discussed. The concentration distributions of the various species formed in solution were evaluated. The ionization constants of TRZ and malic acid and stability constants of their binary and ternary complexes with CuII, NiII, and CoII metal ions were studied at four different temperatures (15, 25, 35, and 45 °C) and the corresponding thermodynamic parameters have been evaluated and discussed. The complexation behavior of ternary complexes was ascertained using conductivity measurements. In addition, the formation of ternary complexes in solution has been confirmed by using UV–visible spectrophotometry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号