首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The aim of this work is to study the difference in the characteristics of commercial clay after the inclusion of two proteins. Bovine serum albumin and egg white lysozyme were immobilized on the structure of commercial montmorillonite, which was previously treated with a hydrochloric acid solution. Studies were carried out at two different concentrations, fixing the pH to ensure the charge of biomolecules and clay surface. Acid‐treated clay containing proteins was characterized by X‐ray diffraction, Fourier transformed infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption at 77 K. The powders showed similar thermal behavior after the inclusion of proteins but with variations in the amount of mass loss in each sample. Moreover, changes in the surface characteristics of the final solid were observed, depending on both the concentration and the nature of the incorporated protein. The differences observed in the acid‐treated clay characteristics after the inclusion of each type of protein are discussed. The characterization of materials after the inclusion of protein molecules can be useful to understand the adsorption mechanism of biomolecules on solid surfaces. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Thermal analysis and differential thermal analysis offers a novel means of studying the desorption of acids such as stearic acid from clay surfaces. Both adsorption and chemisorption can be distinguished through the differences in the temperature of mass losses. Increased adsorption is achievable by adsorbing onto a surfactant adsorbed montmorillonite. Stearic acid sublimes at 179 °C but when adsorbed upon montmorillonite sublimes at 207 and 248 °C. These mass loss steps are ascribed to the desorption of the stearic acid on the external surfaces of the organoclays and from the de-chemisorption from the surfactant held in the interlayer of the montmorillonite.  相似文献   

3.
将4-乙烯基吡啶(4VP)接枝聚合于微米级硅胶表面,制得了接枝有聚4-乙烯基吡啶(P4VP)的接枝微粒P4VP-SiO_2,测定了P4VP-SiO_2的红外光谱,袁征了其化学结构,并测定了该复合型功能微粒材料的Zeta电位.采用静态法研究了P4VP-SiO_2对酸性氨基酸天冬氨酸与谷氨酸的吸附性能,考察了介质pH、离子强度及温度对其吸附性能的影响,探索了吸附机理.研究结果表明:在较大的pH范围内,P4VP-SiO_2的Zeta电位为较高的正值,即微粒表面携带有高密度的正电荷;酸性氨基酸天冬氨酸与谷氨酸等电点都较低,所以在一般的介质pH范围内,它们的分子带有负电荷;凭借静电相互作用,P4VP-SiO_2对酸性氨基酸天冬氨酸与谷氨酸均表现出很强的吸附能力,而对中性与碱性氨基酸(在一般的介质pH范围内分子带有正电荷)的吸附能力则很弱;随介质pH的增大,P4VP-SiO_2对天冬氨酸与谷氨酸的吸附能力呈现先增强后减弱的规律,在pH=4处,吸附容量具有最大值,分别为280 mg/g与230 mg/g;温度升高,吸附容量减小;盐度增大,吸附容量降低.  相似文献   

4.
Distribution of trace amount of Eu(III), or Am(III), in the aqueous/solid system containing humic acid and kaolinite, or montmorillonite, was studied by batch experiments. Humic acid was also adsorbed on the clay minerals and its adsorption isotherm can be regarded as a Langmuir type. It is shown that Eu(III), or Am(III), exists as humate complex either in the aqueous or on solid phase in the system including kaolinite, or montmorillonite. These results suggest that the organic-inorganic complex like clay minerals coated with humic substances is important as metal reservoir in the environment.  相似文献   

5.
Montmorillonite-and cellulose-adsorbed 3,6-diaminoacridine are prepared. The adsorption isotherm studies show that while 3,6-diaminoacridine molecules are adsorbed in the interlayer spaces of the montmorillonite clay, the dye molecules are adsorbed on the surface of cellulose. Quenching studies reveal that the Al3+ ions of the aluminosilicate layers of the clay also quench the excited state emission of the adsorbed 3,6-diaminoacridine.  相似文献   

6.
In this study, the effects of four types of clay minerals on the thermal decomposition of 12-aminolauric acid (ALA) were investigated. The decomposition temperature of ALA in ALA–clay complexes was in the range of 200–500 °C. The derivative thermogravimetry results indicated that all clay minerals exhibited catalytic activity on the decomposition of ALA. Pure ALA decomposed at approximately 464 °C, a temperature higher than the decomposition temperature of ALA in the presence of clay minerals. The decomposition temperature of ALA in different ALA–clay complexes follows the order illite (452 °C) > kaolinite (419 °C) > rectorite (417 °C) > montmorillonite (400 °C). This order is negatively correlated with the amounts of solid acid sites in the clay minerals, indicating that ALA is catalyzed by the solid acid sites in these minerals.  相似文献   

7.
The adsorption of isoproturon and two model compounds, N,N-dimethylurea and4-isopropylaniline, on clay minerals (bentonite,montmorillonite and kaolinite), organic matter (humic acid) and soil (with and without organic matter) has been studied using FT-infrared spectroscopy (IR), thermogravimetric analysis (TGA), high pressure liquid chromatography (HPLC) and X-ray diffraction (XRD).N,N-dimethylurea interacted with bentonite and montmorillonite by the coordination of the carbonyl group, directly or indirectly through water molecules, with exchangeable cations. Adsorption on humic acid was due to hydrogen bonding with the active sites of the adsorbent. The amino group ofN,N-dimethylurea appears tobe relatively inactive during adsorption. The mechanisms involved in the adsorption of 4-isopropylaniline were hydrogen bonding and protonation. No adsorption of 4-isopropylaniline was observed on kaolinite. The investigation of isoproturon suggested that both the carbonyl and amino groups of isoproturon were involved in interactions with the active sites of the adsorbents. Both the clay minerals and organic matter of soil contribute to the adsorption of organic compounds on soil but the clay minerals bentonite and montmorillonite play a major role in their adsorption on soil.  相似文献   

8.
A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage.  相似文献   

9.
Excessive inhalation of mineral dust can cause irreversible damage such as diffuse fibrosis of lung tissue. Water-based dust reduction technology can effectively control the dust concentration. The study of the interaction of water-clay mineral dust is helpful to the prevention and treatment of pneumoconiosis by water-based dust removal technology. To better understand the underlying adsorption mechanisms of water molecules on clay mineral dust, the detailed adsorption thermodynamics analysis is necessary. In this paper, we research the thermodynamics of adsorption of water molecules on swelling clay of montmorillonite and non-swelling clay of illite. First, the adsorption isotherms of water molecules on montmorillonite and illite at 293–313 K were measured by gravimetric method. Then, the key thermodynamic variables, including entropy change (ΔS), surface potential (Ω), isosteric heat of adsorption (Qst) and variation of Gibbs free energy (ΔG), were analyzed. Results illustrate that the adsorption amount for water molecules on illite is one order of magnitude smaller than that on montmorillonite, suggesting that swelling clay plays a dominant role in water molecules adsorption process. For water molecules adsorption on montmorillonite, the contribution of secondary adsorption to total adsorption (a2/a) is always less than 30%. For water molecules adsorption on illite, the contribution of primary adsorption to total adsorption (a1/a) is greater than a2/a at the low pressure region, while a2/a can exceed 60% at the high pressure region. The difference in the uptakes of water molecules adsorption on non-swelling and swelling clays is mainly resulted from the difference in primary adsorption on two clays. The Henry’s constant (KAA) for montmorillonite is in the range of 21.37–75.08 mmol/g/kPa, which is evidently larger than the KAA values of 0.34–0.98 mmol/g/kPa for illite. Compared with non-swelling clay, the adsorption spontaneity degree for water molecules on swelling clay is higher, and the interaction of swelling clay-water molecules is stronger. Meanwhile, the movement of adsorbed water molecules in swelling clay is more confined than that in non-swelling clay. These findings can offer meaningful guidelines for the prevention and treatment of pneumoconiosis.  相似文献   

10.
The interaction of aspartic acid with kaolinite was studied by potentiometric titrations and by adsorption measurements both at constant aspartate concentration (but varying pH) and at a constant pH of 5.5. The temperature was 25 degrees C, and the ionic medium 5 mM KNO3. Aspartic acid dissociation constants estimated from titrations agreed with those from the literature. The adsorption of aspartic acid to kaolinite was weak and varied only slightly with pH; 10-18% of 100 microM aspartic acid adsorbed to kaolinite at 100 m(2)L(-1) between pH 3 and 10. Data from the titrations and adsorption experiments were fitted closely by an extended constant-capacitance surface complexation model, in which monodentate outer-sphere complexes formed between deprotonated aspartic acid molecules and protonated sites on the variable-charge edges of the kaolinite crystals. There appeared to be no adsorption to the permanently charged crystal faces.  相似文献   

11.
Au nanoparticles (NPs) functionalized with thioaniline and cysteine are used to assemble bis‐aniline‐bridged Au‐NP composites on Au surfaces using an electropolymerization process. During the polymerization of the functionalized Au NPs in the presence of different amino acids, for example, L ‐glutamic acid, L ‐aspartic acid, L ‐histidine, and L ‐phenylalanine, zwitterionic interactions between the amino acids and the cysteine units linked to the particles lead to the formation of molecularly imprinted sites in the electropolymerized Au‐NP composites. Following the elimination of the template amino acid molecules, the electropolymerized matrices reveal selective recognition and binding capabilities toward the imprinted amino acid. Furthermore, by imprinting of L ‐glutamic or D ‐glutamic acids, chiroselective imprinted sites are generated in the Au‐NP composites. The binding of amino acids to the imprinted recognition sites was followed by surface plasmon resonance spectroscopy. The refractive index changes occurring upon the binding of the amino acids to the imprinted sites are amplified by the coupling between the localized plasmon associated with the Au NPs and the surface plasmon wave.  相似文献   

12.
The cetyltrimethylammonium hydroxide (C16TMAOH) solution was proposed for the preparation of organoclays. Montmorillonite clay was acid activated at different acid/clay (a/c) (in mass) ratios, then treated with alkaline (sodium hydroxide) solution before being reacted with C16TMAOH solution. The acid activation caused a reduction in the number of cation exchange sites, and hence improved the exfoliation of the silicate sheets at higher pH values. The basal spacing increased significantly from 2.20 to 4.01 nm, and depended on the a/c ratios. The acid-activated clays with a/c ratios greater than 0.3 adsorbed significant amounts of C16TMA cations with a basal spacing of 4.01 nm compared with the non-acid-activated montmorillonite (2.51 nm). Meanwhile, the treatment of NaOH solution yielded clays with similar properties to that of the raw used clay. The XRF data, FT-IR, and 29Si MAS-NMR techniques confirmed that the resulting amorphous silica during the acid activation was dissolved, and accompanied by a dramatical reduction in the surface areas. Similar amounts of C16TMA cations were adsorbed, i.e., close to 1 mmol g?1, with a single basal spacing of 2.52 nm, independently of the treated acid-activated clays. The in-situ powder XRD studies revealed that an increase of the basal spacing to 4.20 nm was observed at intermediate temperatures ranging from 50 to 150 °C for organo-acid-activated clays with basal spacing of 4.01 nm, while a continuous decrease of the basal spacing was observed for organoclays with a basal spacing of 2.52 nm. At higher temperatures greater than 250 °C, the decomposition of the surfactant occurs, and the basal spacing decreases to a value of about 1.4 nm.  相似文献   

13.
Ziziphus jujuba pulps are very much appreciated by the inhabitants and have been recently exported. This article reports on the chemical composition (amino acids, polyphenols and sugars) of the pulps of four Z. jujuba ecotypes (Choutrana, Mahdia, Mahres and Sfax). The major amino acids identified were proline, aspartic acid and glutamic acid. Among these, proline was the most abundant amino acid (17.4 mol). Considerable differences in total phenolic contents (15.85 mg/L) were found. Predominant phenols identified by using HPLC were rutin (1.09 mg/L) and chlorogenic acid (2.57 mg/100 g). Sugars isolated from Ziziphus pulps were found at a rate of 43.52%. Using HPLC method, three sugars from the pulp extract were identified: glucose, galactose and sucrose. The Mahdia ecotype was the richest in these sugars with 0.45, 136.51 and 113.28 mg/L, respectively.  相似文献   

14.
Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.  相似文献   

15.
The adsorption behavior of various amino acids on a stainless steel surface was investigated at 30 degrees C and over a pH range of 3-10. Acidic and basic amino acids except histidine adsorbed remarkably at pH 3-4 and 7-10, respectively, and showed Langmuir-type adsorption isotherms. The effects of pH and ionic strength on the adsorption isotherms were investigated to analyze the interactions between amino acids and adsorption sites on the stainless steel. Hydrophobic amino acids and glycine showed only small adsorbed amounts at all pHs tested. For the acidic and basic amino acids, reversibility of the absorption and the influence of the ionic strength on the adsorption behavior were examined. The adsorption isotherms of the derivatives of aspartic acid were also measured in order to examine the contribution of the carboxylic groups of acidic amino acids to the adsorption. Furthermore, a Fourier-transform infrared spectroscopic analysis and semiempirical molecular orbital calculation were carried out to analyze the ionization states and the configuration of the amino acids adsorbed on a stainless steel surface. These investigations suggest that the acidic and basic amino acids adsorb through two electrostatic interactions of two ionized groups in the amino acid with a stainless steel surface. Copyright 2000 Academic Press.  相似文献   

16.
The adsorption of extracellular polymeric substances (EPS) from Bacillus subtilis on montmorillonite, kaolinite and goethite was investigated as a function of pH and ionic strength using batch studies coupled with Fourier transform infrared (FTIR) spectroscopy. The adsorption isotherms of EPS on minerals conformed to the Langmuir equation. The amount of EPS-C and -N adsorbed followed the sequence of montmorillonite>goethite>kaolinite. However, EPS-P adsorption was in the order of goethite>montmorillonite>kaolinite. A marked decrease in the mass fraction of EPS adsorption on minerals was observed with the increase of final pH from 3.1 to 8.3. Calcium ion was more efficient than sodium ion in promoting EPS adsorption on minerals. At various pH values and ionic strength, the mass fraction of EPS-N was higher than those of EPS-C and -P on montmorillonite and kaolinite, while the mass fraction of EPS-P was the highest on goethite. These results suggest that proteinaceous constituents were adsorbed preferentially on montmorillonite and kaolinite, and phosphorylated macromolecules were absorbed preferentially on goethite. Adsorption of EPS on clay minerals resulted in obvious shifts of infrared absorption bands of adsorbed water molecules, showing the importance of hydrogen bonding in EPS adsorption. The highest K values in equilibrium adsorption and FTIR are consistent with ligand exchange of EPS phosphate groups for goethite surface. The information obtained is of fundamental significance for understanding interfacial reactions between microorganisms and minerals.  相似文献   

17.
Phospho‐L‐glutamic acid was successfully prepared by the phosphorylation of glutamic acid, and its adsorption on synthetic hydroxyapatite (HAP) was studied together with glutamic. The adsorption behaviors of both adsorbates were adequately described by a Langmuirian model. From the comparison between two different adsorbates, the results of the investigation indicated that the phosphate group in phospho‐L‐glutamic acid can greatly enhanced the adsorption affinity for HAP, the improvement of which was achieved through replacing the same group on the surface of HAP and interacting with the surface calcium ion of HAP by electrostatic attraction. The results obtained laid the solid foundation for further research on the regulating function of phosphorylated amino acids with hydroxyapatite biological composites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Radionuclide adsorption on clay rocks has in recent years been studied mainly in connection with their use as sealing barriers in nuclear waste and spent nuclear fuel repositories. In Slovakia we find deposits of bentonites which should be used for the above mentioned purpose. The usability of adsorbents in practical applications depends on the speed of the adsorption process of the adsorbate on the adsorbent surface and distribution ratio. The work objective was the study of the kinetics of Sr adsorption on clay adsorbents with different geological origin. The geological origin of bentonite significantly influences its mineralogical and chemical composition and therein its adsorption properties. The adsorption process of strontium was fast. Adsorption equilibrium was reached for all three samples studied within 1 min from the beginning of the contact between solid and liquid phases. After the adsorption equilibrium was reached there were no more changes in the values of distribution coefficients and the adsorption percentage, and comparable values were reached in the contact-phase time span studied within 10 days. The values of adsorbed strontium were decreasing in the following order: J250 > L250 > DV45. The pseudo second-order kinetic models was used to describe model the kinetic data and provided excellent kinetic data fitting (R 2 > 0.999).  相似文献   

19.
In situ ATR-IR spectroscopy has been applied to the study of glutamic (Glu) and aspartic (Asp) acid adsorbed on amorphous TiO(2) particle films. Unlike Asp, which gives evidence of one major adsorbed species, Glu yields several spectroscopically distinct structures upon adsorption to TiO(2). The pH dependence of Glu and Asp adsorption is also different, with Glu adsorbing markedly to TiO(2) at pH where electrostatic interactions between the surface and adsorbate are unfavorable. Application of the Langmuir model to adsorption isotherms yields a single binding constant for Asp and two binding constants for Glu, further supporting the evidence for different adsorbed Glu species. This is the first investigation of the molecular structure of Glu and Asp species adsorbed on amorphous TiO(2) using in situ ATR-IR spectroscopy. Copyright 2000 Academic Press.  相似文献   

20.
RNA is adsorbed strongly on suspensions of many moderately soluble organic solids. In some cases, the hydrolysis of tRNAPhe is greatly accelerated by adsorption, and the major sites of hydrolysis are changed from those that are important in homogeneous solution. Here we show that the hydrolysis is greatly accelerated by suspensions of aspartic acid and β‐glutamic acid but not by suspensions of α‐glutamic acid, asparagine, or glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号