首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the first time, the intercalation properties of acid-activated montmorillonites treated at different acid/clay (w/w) ratios with a cationic surfactant cetyltrimethylammonium (C16TMA) hydroxide are reported. The acid activation causes a reduction in the number of cation exchange sides and, hence improves the exfoliation of the silicate sheets at higher pH values. The basal spacing increases significantly from 1.54 to 3.80 nm, and is related to the acid activation extent. The acid activated clays with acid/clay ratios above 0.2 intercalated significant amounts of C16TMA cations with a basal spacing of 3.8 nm compared to the non acid activated montmorillonite with a basal spacing of 2.10 nm. The 13C CP/MAS NMR indicates that the intercalated surfactants exhibit a significant degree of gauche conformation in the acid-activated clays. According to in-situ powder XRD, an increase of the basal spacing to 4.08 nm is observed at intermediate temperatures of 50-150 degrees C for organoclay with basal spacing of 3.80 nm, at higher temperatures above 300 degrees C, the decomposition of the surfactant occurs and the basal spacing decreases to a value of about 1.4 nm, with the persistence of a reflection at 3.8 nm for clay at a higher acid/clay ratio of 0.5.  相似文献   

2.
Two different kinds of organoclays were prepared by mixing a pristine montmorillonite and a double‐chain ammonium salt in many different thermoplastic or elastomeric polymers. Independently of the chemical nature of the considered polymers, the obtained organoclays presented a basal spacing of 4 or 6 nm, when the mixing occurred in the absence or in the presence of a small amount of stearic acid (SA), respectively. X‐ray diffraction and Fourier transform infrared measurements support the hypothesis that these two kinds of organoclays correspond to paraffin‐type tilted and perpendicular bi‐layer intercalates, respectively. The co‐intercalation of SA molecules with the double‐chain amphiphile is suggested, to explain the observed expansion of the clay interlayer distance. The obtained results suggest an easy way to control the organoclay structure in polymer composites. Moreover, the authors on the basis of these results propose a criticism to the extensive literature that systematically explains most d basal spacing increase observed for clays in polymer with the penetration of apolar polymer chains in the clay interlayer space. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Adsorption and photo-Fenton processes were used as handy tools to ascertain the capability of natural clays to remove cadmium (Cd) and 2-chlorophenol (2-CP) from aqueous solution. Natural Fe-rich clay collected from Tejera-Esghira in Medenine area, south Tunisia, was used as a catalyst in the heterogeneous photo-Fenton oxidation of 2-CP in aqueous solution. Clay samples were acid activated to improve their adsorptive capacity for the removal of Cd. Experimental results indicated that the adsorption of Cd ions onto natural red clay of Tejera-Esghira followed the pseudo-second-order kinetic model. Langmuir model was found to describe the equilibrium data with the calculated maximum adsorption capacity of 23.59 mg g?1 for acid-activated clay. Photo-Fenton experiments proved high activity of the natural clay catalyst, which was able to completely degrade the phenol present in the treated solution after 30 min and in the presence of ultraviolet light C (UV-C). Total organic carbon and gas chromatography analysis confirmed a 2-CP degradation mechanism toward an almost complete mineralization of the organic compound.  相似文献   

4.
The uptake of the amphoteric surfactant, cocamidopropyl betaine (CAB) by a sodium montmorillonite clay was studied with respect to concentration and pH. A series of organoclays was prepared in which the basal spacings were found to depend on both parameters. Adjusting the solution pH during preparation influenced the adoption of either 1.8 or 2.0 nm spacing, whereas the 3.9 nm spacing in the same sample was unaffected. The presence of the carboxyl group in the CAB molecule enabled dispersion of the clay at higher pH by which means pure organoclays of high spacing could be obtained, whereas, without dispersing the clay, mixed populations were obtained. The results indicate the optimum parameters for preparing organoclays of desired spacings for use in clay-reinforced nanocomposites.  相似文献   

5.
The arrangement of bisphenol A molecules into organoclays and their interactions with the intercalated surfactant were studied. The organoclays were prepared via solid-state intercalation of four cationic surfactants, such as dodecyltrimethyl-, tetradecyltrimethyl-, hexadecyltrimethyl-, and didodecyldimethyl-ammonium, as bromide salts, at different loading levels into the interlayers of two natural clays. The natural clays, the prepared organoclays, and the spent organoclays were characterized by X-ray powder diffraction, infrared spectroscopy, and scanning electron microscopy. X-ray powder diffraction measurements showed successive interlayer expansions of the d001 basal spacing due to the intercalation of the cationic surfactants and the bisphenol A sorption. The increased d001 basal spacing of the organoclays after bisphenol A sorption indicates that the molecules are integrated between the alkyl chains of the surfactant in the organoclays interlayers. Infrared spectroscopy was employed to probe the intercalation of the cationic surfactants and the sorbed bisphenol A. New characteristic bands attributed to the bisphenol A phenol rings appear in the range 1518–1613 cm−1 on the infrared spectra of the spent organoclays, proving the presence of bisphenol A in the hydrophobic interlayers. Scanning electron microscopy of the organoclays before and after BPA sorption shows that their morphology becomes fluffy and that the presence of the organic molecules expands the clay structure.  相似文献   

6.
Na-montmorillonite (Na-MONT) was loaded with hexadecyltrimethylammonium cations (HDTMA) by replacing 41 and 90% of the exchangeable Na with HDTMA. The organoclays were labeled OC-41 and OC-90, respectively. Freeze-dried Na-MONT, OC-41, and OC-90 were heated in air at 150, 250, 360, 420, 550, 700, and 900 °C. The thermally treated samples were suspended in water, air-dried, and desiccated over silica during 40 days. All samples were diffracted by X-ray and fitting calculations were performed on each diffractogram. These calculations gave information on basal spacings, relative concentrations, and homogeneity of the different tactoids obtained at each temperature, before and after suspending and desiccating. HDTMA-MONT tactoids with spacing ≥1.41 nm appeared between 25 and 250 °C. OC-41 or OC-90 intercalated monolayers or bilayers of HDTMA, respectively. At 250 °C OC-41 was air-oxidized to a smaller extent than OC-90, resulting in charcoal-MONT tactoids. With further heating the organic matter was gradually oxidized and at 700 °C both clays were collapsed. During the thermo-XRD-analysis of both organoclays three types of charcoal-MONT complexes appeared: (1) LTSC-MONT tactoids with a basal spacing 1.32–1.39 nm, between 250 and 420 °C in both clays; (2) HTSC-α-MONT tactoids with spacing 1.22–1.28 nm, between 360 or 250 and 500 or 550 °C in OC-41 or OC-90, respectively; (3) HTSC-β-MONT with spacing 1.12–1.18 nm, between 360 and 550 °C in both clays, where LTSC and HTSC are low- and high-temperature stable charcoal, respectively. HTSC-β-MONT differs from HTSC-α-MONT by having carbon atoms keying into the ditrigonal holes of the clay-O-planes.  相似文献   

7.
Na-montmorillonite was loaded with tetraethylammonium cations (TEA) or with benzyltrimethylammonium cations (BTMA) by replacing 77 and 81% of the exchangeable Na with TEA or BTMA, labeled TEA-MONT and BTMA-MONT, respectively. TEA- and BTMA-MONT were heated in air up to 900?°C. Thermally treated organoclays are used in our laboratory as sorbents of organic compounds from water. The two organoclays were studied by TG and DTG in air and under nitrogen. Carbon content in each of the heated sample was determined. They were diffracted by X-ray, and fitting calculations of d(001) peaks were performed on each diffractogram. TG and thermo-C analysis showed that at 150 and 250?°C both organoclays lost water but not intercalated ammonium cations. DTG peak of the first oxidation step of the organic cation with the formation of low-temperature stable charcoal (LTSC) appeared at 364 and 313?°C for TEA- and BTMA-MONT, respectively. The charcoal was gradually oxidized by air with further rise in temperature. DTG peak of the second oxidation step with the formation of high-temperature stable charcoal (HTSC) appeared at 397 and 380?°C for TEA- and BTMA-MONT, respectively. DTG peak of the final oxidation step of the organic matter appeared at 694 and 705?°C for TEA- and BTMA-MONT, respectively, after the dehydroxylation of the clay. Thermo-XRD analysis detected TEA-MONT tactoids with spacing 1.40 and 1.46?nm up to 300?°C. At 300 and 360?°C, LTSC-MONT tactoids were detected with spacing of 1.29?nm. At higher temperatures, HTSC-MONT-?? and -?? tactoids were detected with spacings of 1.28 and 1.13?nm, respectively. BTMA-MONT tactoids with spacings 1.46 and 1.53?nm were detected up to 250?°C. At 300 and 360?°C, LTSC-MONT tactoids were detected with a spacing of 1.38?nm. At higher temperatures, HTSC-MONT-?? and -?? tactoids were detected with spacings of 1.28 and 1.17?nm, respectively. At 650?°C, both clays were collapsed. HTSC-??-MONT differs from HTSC-??-MONT by having carbon atoms keying into the ditrigonal holes of the clay-O-planes. At 900?°C, the clay fraction is amorphous. Trace amounts of spinel and cristobalite are obtained from thermal recrystallization of amorphous meta-MONT.  相似文献   

8.
Poly(oxyethylene) alkyl ether (CnEOm) is intercalated into the interlayer space of a layered silicate kanemite by using layered hexadecyltrimethylammonium (C16TMA) intercalated kanemite (C16TMA-kanemite) as the intermediate. C16TMA-kanemite was treated with an aqueous solution of C16EO10, and the intercalation of C16EO10 was confirmed by the slight increase in the basal spacing (from 2.92 to 3.34 nm) with the increase in the carbon content, yielding C16EO10-C16TMA-kanemite. The product was dispersed again in a C16EO10 aqueous solution, and then 1.0 M HCl was added to the suspension to remove C16TMA ions completely. The basal spacing was further increased (from 3.34 to 5.52 nm) and the content of nitrogen was virtually zero, indicating further intercalation of C16EO10 molecules and complete elimination of C16TMA ions simultaneously. Though C16EO10 molecules are not directly intercalated into kanemite, the mutual interactions among C16TMA ions, C16EO10 molecules, and the interlayer silicate surfaces effectively induce the intercalation of C16EO10. C16EO10-kanemite shows a reversible adsorption of n-decane and water owing to the hydrophobicity and hydrophilicity of C16EO10, respectively, in the interlayer space. Layered CnEO10-kanemites (n = 12 and 18) were also synthesized in a manner similar to layered C16EO10-kanemite.  相似文献   

9.
Two commercial powdered organoclays, Cloisite 15A and Cloisite 30B, as long-chain organoclays, and two organically modified clays with tetramethylammonium chloride (TMA-clay), as short-chain organoclays were used in this study to investigate their potentials for crude oil removal from salty waters. Batch experiments were performed to examine the effect of contact time and pH on the adsorption process. The results showed that the equilibrium time was reached within 25–30 and 50–55 minutes of contact time for long and short-chain organoclays, respectively. In addition, adsorption isotherms were obtained at an optimum pH value of 11.73 and temperature of 19°C for which initial oil contents varied in the range of 100 to 2000 ppm. Experimental results indicated that the sorption of oil onto Cloisite 15A, Cloisite 30B and the organically modified clays can be described by Freundlich isotherm and oil sorption followed the order of modified Cloisite Na > Cloisite 30B > Cloisite 15A > a modified local clay.   相似文献   

10.
Surfactant modified montmorillonitic clays synthesized by ion exchange using the hydrothermal reaction method have been compared using XRD and thermal analysis. X-ray diffraction (XRD) shows the changes in the surface properties of organoclays through expansion with surfactant loading. A polynomial relationship exists between the basal spacing and the CEC loading described by the equation y=0.3232x(2) + 0.2052x+1.2834 with R(2)=0.9955. Different arrangements of the surfactant molecules in the organoclays are inferred from the changes in basal spacings. para-Nitrophenol also causes the expansion of the montmorillonite clay and affects the arrangements of the surfactant molecules within the clay layers. Changes in the surfactant molecular arrangements were analyzed by thermogravimetry. Additional thermal decomposition steps were observed when para-nitrophenol is adsorbed on the organoclay.  相似文献   

11.
Thermal analysis of some sericite clays, from several deposits in Spain, which are not exploited at this time, has been studied. The samples have been previously characterized by mineralogical and chemical analysis. Sericite clays have interesting properties, with implications in ceramics and advanced materials, in particular concerning the formation of mullite by heating. According to this investigation by differential thermal and thermogravimetric analysis (DTA-TG), the sericite clay samples can be classified as: Group (I), sericite–kaolinite clays, with high or medium sericite content, characterized by an endothermic DTA peak of dehydroxylation of kaolinite with mass loss, which overlapped with dehydroxylation of sericite, and Group (II), sericite–kaolinite–pyrophyllite clays, with broader endothermic DTA peaks, in which kaolinite is dehydroxylated first and later sericite and pyrophyllite with the main mass loss, appearing the peaks overlapped. X-ray diffraction analysis of the heated sericite clay samples evidenced the decomposition of dehydroxylated sericite and its disappearance at 1050 °C, with formation of mullite, the progressive disappearance of quartz and the formation of amorphous glassy phase. The vitrification temperature is ~ 1250 °C in all these samples, with slight variations in the temperatures of maximum apparent density (2.41–2.52 g mL?1) in the range 1200–1300 °C. The fine-grained sericite content and the presence of some mineralogical components contribute to the formation of mullite and the increase in the glassy phase by heating. Mullite is the only crystalline phase detected at 1400 °C with good crystallinity. SEM revealed the dense network of rod-shaped and elongated needle-like mullite crystals in the thermally treated samples. These characteristics are advantageous when sericite clays are applied as ceramic raw materials.  相似文献   

12.
The aim of this study was to obtain novel photo-functional organomontmorillonites from the intercalation reaction of Cloisite Na+ and fluorescent dyes of auramine O, and safranin T in an aqueous solution. The insertion of surfactants in the interlamellar space of nanoclay was followed by Fourier transform infrared spectroscopy and X-ray measurements. An X-ray diffraction analysis established that incorporation of the organic dye cations into the Cloisite Na+ expands remarkably the mineral interplanar distances from 1.17 to 1.83–1.97 nm. Field emission scanning electron microscopy was used to study the morphology of the synthesized organoclays. The thermal behavior of the novel hybrid materials was investigated by thermogravimetric analysis and the results show that the organo modified clays verify stepwise decomposition corresponding to initial weight loss from residual water desorption, followed by decomposition of the fluorescent dyes and the dehydroxylation of structural water of the clay layers. Fluorescence properties of the cationic dyes, auramine O, and safranin T incorporated in the clay have significant differences from their behavior in organic solvents and water and the results show that both dyes exhibit a significant fluorescence emission at room temperature when adsorbed in clay.  相似文献   

13.
X-ray photoelectron spectroscopy (XPS) in combination with X-ray diffraction (XRD) and high-resolution thermogravimetric analysis (HRTG) has been used to investigate the surfactant distribution within the organoclays prepared at different surfactant concentrations. This study demonstrates that the surfactant distribution within the organoclays depends strongly on the surfactant loadings. In the organoclays prepared at relative low surfactant concentrations, the surfactant cations mainly locate in the clay interlayer, whereas the surfactants occupy both the clay interlayer space and the interparticle pores in the organoclays prepared at high surfactant concentrations. This is in accordance with the dramatic pore volume decrease of organoclays compared to those of starting clays. XPS survey scans show that, at low surfactant concentration (<1.0 CEC), the ion exchange between Na+ and HDTMA+ is dominant, whereas both cations and ion pairs occur in the organoclays prepared at high concentrations (>1.0 CEC). High-resolution XPS spectra show that the modification of clay with surfactants has prominent influences on the binding energies of the atoms in both clays and surfactants, and nitrogen is the most sensitive to the surfactant distribution within the organoclays.  相似文献   

14.
Summary: The organic intercalation of cationic smectite clays is achieved by using alkali salts of alkyl carboxylic acids, instead of using conventional quaternary ammonium salts as ionic exchanging agents. Various organic acid salts, such as CH3(CH2)16COONa+, can be incorporated into divalent montmorillonite (M2+‐MMT) with a 30–40 wt.‐% organic embedding and an X‐ray diffraction basal spacing of 43 Å from the pristine 10 Å. The intercalation is generalized for carboxylate salts of different alkyl lengths and for alkali metal ions, including sodium and potassium ions, but is specific for the divalent MMT clay. This new type of organic species for clay modification allows the preparation of organoclays in the absence of quaternary ammonium salts. It is proposed that the organic embedding is driven by the formation of a thermodynamically stable RCOO/M2+/SiO complex.

Graphical illustration of the carboxylic acid salt complex with the divalent cations on silicate K10.  相似文献   


15.
Porous clay heterostructures (PCHs) with enhanced acidity may be prepared from suitably acid-activated montmorillonite clays; the higher acidity arises from Br?nsted acid sites generated by acid treatment of the clay prior to its use as a host for PCH formation.  相似文献   

16.
The bisphenol‐A type epoxy resin was combined with layered clays. Three types of epoxy/clay nanocomposites were prepared by different clay pretreatment methods, that is, the slurry (clay swelling with polar solvent), organo, and solubilization (organoclay swelling with polar solvent) methods. The organo and solubilization systems showed good dispersibility. The basal spacing of the layered clays in the obtained nanocomposites was evaluated by XRD and TEM observations. The basal spacing of the nanoclay in the solubilization system drastically increased. The mechanical properties were improved with the increase in the clay dispersion. A high modulus and fracture toughness were obtained by improvement of the clay dispersion into the matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1753–1761, 2009  相似文献   

17.
For combining the properties of organoclays and pillared clays, inorganic–organic clays have attracted much attention in recent years. In this study, Al Keggin cation pillared montmorillonites (Al-Mts) were first prepared and parts of Al-Mts were calcined at different temperatures (C-Al-Mts). The inorganic–organic montmorillonites were synthesized by intercalating Al-Mts and C-Al-Mts with the cationic surfactant, hexadecyltrimethyl ammonium bromide (HDTMAB). The products were characterized by X-ray diffraction, X-ray fluorescence, and simultaneous thermogravimetric analysis. For HDTMAB-modified uncalcined Al Keggin cation pillared montmorillonites (H-Al-Mts), the basal spacing increased with the increment of surfactant loading level, but the Al content of H-Al-Mts decreased simultaneously, indicating that the intercalated surfactant replaced some Al Keggin cations in the interlayer space. However, in the case of C-Al-Mts, the interlayer spaces could not be further expanded after surfactant modification, implying that the neighboring montmorillonite layers were “locked” by the aluminum pillars which were formed by dehydroxylation of Al Keggin cation pillars during thermal treatment. The thermal stability of HDTMAB-modified C-Al-Mts (H-C-Al-Mts) was much better than that of H-Al-Mts. The major mass loss of H-C-Al-Mts occurred at ca. 410 °C, corresponding to decomposition of intercalated surfactant cations. In contrast, H-Al-Mts displayed two mass loss temperatures at ca. 270 and 410 °C, corresponding to the evaporation of surfactant molecules and the decomposition of surfactant cations in the interlayer space, respectively.  相似文献   

18.
Novel epoxy‐clay nanocomposites have been prepared by epoxy and organoclays. Polyoxypropylene triamine (Jeffamine T‐403), primary polyethertriamine (Jeffamine T‐5000) and three types of polyoxypropylene diamine (Jeffamine D‐230, D‐400, D‐2000) with different molecular weight were used to treat Na‐montmorillonite (MMT) to form organoclays. The preparation involves the ion exchange of Na+ in MMT with the organic ammonium group in Jeffamine compounds. X‐ray diffraction (XRD) confirms the intercalation of these organic moieties to form Jeffamine‐MMT intercalates. Jeffamine D‐230 was used as a swelling agent for the organoclay and curing agent. It was established that the d001 spacing of MMT in epoxy‐clay nanocomposites depends on the silicate modification. Although XRD data did not show any apparent order of the clay layers in the T5000‐MMT/epoxy nanocomposite, transmission electron microscopy (TEM) revealed the presence of multiplets with an average size of 5 nm and the average spacing between multiplets falls in the range of 100 Å. The multiplets clustered into mineral rich domains with an average size of 140 nm. Scanning electron microscopy (SEM) reveals the absence of mineral aggregate. Nanocomposites exhibit significant increase in thermal stability in comparison to the original epoxy. The effect of the organoclay on the hardness and toughness properties of crosslinked polymer matrix was studied. The hardness of all the resulting materials was enhanced with the inclusion of organoclay. A three‐fold increase in the energy required for breaking the test specimen was found for T5000‐MMT/epoxy containing 7 wt% of organoclay as compared to that of pure epoxy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Intercalation and exfoliation behavior of organoclays in epoxy resin has been studied through XRD and DSC. It was found that the organoclays were easily intercalated by epoxy oligomer to form a stable epoxy/clay intercalated hybrid. Under appropriate conditions the clays were able to be further exfoliated as the epoxy resin was cured; thus, a nanocomposite was obtained. It was also found that the exfoliating ability of the organoclays was basically determined by the nature of the clays and the curing agent used. The exfoliation mechanism is discussed in this paper. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 115–120, 2001  相似文献   

20.
Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号