首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the thermal decomposition kinetics of uranyl acetate dehydrate [UO2(CH3COO)2·2H2O] were studied by thermogravimetry method in flowing nitrogen, air, and oxygen atmospheres. Decomposition process involved two stages for completion in all atmosphere conditions. The first stage corresponded to the removal of two?moles of crystal water. The decomposition reaction mechanism of the second stage in nitrogen atmosphere was different from that in air and oxygen atmospheres. Final decomposition products were determined with X-ray powder diffraction method. According to these data, UO2 is the final product in nitrogen atmosphere, whereas U3O8 is the final product in air and oxygen atmospheres. The calculations of activation energies of all reactions were realized by means of model-free and modeling methods. Kissinger?CAkahira?CSunose (KAS) and Flynn?CWall?COzawa (FWO) methods were selected for model-free calculations. For investigation of reaction models, 13 kinetic model equations were tested. The model, which gave the highest linear regression, the lowest standard deviation, and an activation energy value which was close to those obtained from KAS and FWO equations, was selected as the appropriate model. The optimized value of activation energy and Arrhenius factor were calculated using the selected model equation. Using these values, thermodynamic functions (??H*, ??S*, and ??G*) were calculated.  相似文献   

2.
The thermal decomposition kinetics of UO2C2O4·3H2O were studied by TG method in a flowing nitrogen, air, and oxygen atmospheres. It is found that UO2C2O4·3H2O decomposes to uranium oxides in four stages in all atmosphere. The first two stages are the same in the whole atmosphere that correspond to dehydration reactions. The last two stages correspond to decomposition reactions. Final decomposition products are determined with X-Ray powder diffraction method. Decomposition mechanisms are different in nitrogen atmosphere from air and oxygen atmosphere. The activation energies of all reactions were calculated by model-free (KAS and FWO) methods. For investigation of reaction models, 13 kinetic model equations were tested and correct models, giving the highest linear regression, lowest standard deviation, and agreement of activation energy value to those obtained from KAS and FWO equations were found. The optimized value of activation energy and Arrhenius factor were calculated with the best model equation. Using these values, thermodynamic functions (??H *, ??S *, and ??G *) were calculated.  相似文献   

3.
The non-isothermal decomposition of cobalt acetate tetrahydrate was studied up to 500°C by means of TG, DTG, DTA and DSC techniques in different atmospheres of N2, H2 and in air. The complete course of the decomposition is described on the basis of six thermal events. Two intermediate compounds (i.e. acetyl cobalt acetate and cobalt acetate hydroxide) were found to participate in the decomposition reaction. IR spectroscopy, mass spectrometry and X-ray diffraction analysis were used to identify the solid products of calcination at different temperatures and in different atmospheres. CoO was identified as the final solid product in N2, and Co3O4 was produced in air. A hydrogen atmosphere, on the other hand, produces cobalt metal. Scanning electron microscopy was used to investigate the solid decomposition products at different stages of the reaction. Identification of the volatile gaseous products (in nitrogen and in oxygen) was performed using gas chromatography. The main products were: acetone, acetic acid, CO2 and acetaldehyde. The proportions of these products varied with the decomposition temperature and the prevailing atmosphere. Kinetic parameters (e.g.E and lnA) together with thermodynamic functions (e.g. °H, C p and °S) were calculated for the different decomposition steps. In celebration of the 60th birthday of Dr. Andrew K. Galwey  相似文献   

4.
The thermal decomposition of (UO2)3(PO4)2 and U(HPO4)2 ·xH2O in the temperature range 25–1600?, was investigated. (UO2)3(PO4)2 decomposed first to 1/3[U3O8 + 3U2O3P2O7] and then to U3O5P2O7 before a loss of phosphorus was observed above 1350?. Decomposition in air and in inert atmospheres was nearly identical. Reduction with H2 or with carbon black in argon gave U3O5P2O7 and [UO2 + + (UO)2P2O7] before pure UO2 was formed. U(HPO4)2 ·xH2O decomposed to UP2O7 in argon. It oxidized partly in air before the same product was obtained. The high temperature stability of UP2O7 and U3(PO4)4 was also investigated.  相似文献   

5.
《Thermochimica Acta》1979,29(2):253-259
The intermediate products formed during thermal decomposition of ammonium uranyl carbonate (AUC) in different atmospheres, (air, helium and hydrogen) have been determined by thermal analysis, (TG, and DTA) and X-ray analysis. The endproducts observed are U3O8 and UO2 in air/He and hydrogen, respectively. The following intermediate products were observed in all atmospheres:
X-ray diffraction analysis showed that these phases were amorphous.  相似文献   

6.
本文制备了均匀棒状过氧化氢合碳酸钠,化学分析确定其组成为Na2CO3·1.5H2O2,用DTA-TG-DTG技术并辅以X-ray分析研究了它在静态空气、流动氧气和流动氮气气氛中的非等温热分解过程及动力学。  相似文献   

7.
The stability and decomposition of CaUO4, Ca2UO5, and Ca3UO6 on heating in hydrogen were investigated by X-ray powder diffraction and thermogravimetry. Ca2UO5 decomposes at 450°C into Ca2UO4.5 with a triclinic unit cell. At 850°C, it changes to monoclinic Ca2(Ca0.67U0.33)UO6 which loses some oxygen up to the composition Ca2(Ca0.67U0.33)UO5.83. At 1100°C, it decomposs to UO2 solid solution and CaO. CaUO4 decomposes at 900°C to Ca2(Ca0.67U0.33)UO5.83 and CaU2O6. The decomposition products of Ca3UO6 at 850°C are Ca2(Ca0.67U0.33)UO5.83 and CaO.  相似文献   

8.
In this paper, a TG/DTG–DSC–FTIR study of type I collagen extracted from bovine Achilles tendon both in inert (nitrogen) and oxidative atmosphere (synthetic air and oxygen) from room temperature to 700 °C was performed. The thermal analysis results have shown that after initial dehydration, collagen exhibits a single decomposition step in nitrogen (due to pyrolysis), while in air and oxygen two steps are observed due to thermo-oxidative decomposition, the latter being highly exothermic. The CO2 bands dominate the FTIR spectra of evolved gases in all atmospheres (especially in air and oxygen), along with the characteristic bands of ammonia, water, HNCO, methane. In nitrogen, the bands of pyrrole, HCN, and ethane were also identified, while in oxidative atmospheres, nitrogen oxides and CO are released. A study was also performed by comparing the DTG and gas evolution curves observed for the three atmospheres.  相似文献   

9.
The main goal of the presented work was to verify the previously assumed decomposition stages of [Co(NH3)6]2(C2O4)3·4H2O (HACOT) [Thermochim. Acta 354 (2000) 45] under different atmospheres (inert, oxidising and reducing). The gaseous products of the decomposition were qualitatively and quantitatively analysed by mass spectrometry (MS) and Fourier-transformed infrared spectroscopy (FT-IR). It was confirmed that the gaseous products of HACOT decomposition under studied atmospheres there were H2O (stage I) and NH3, CO2 (stage II). The main gaseous products in the third stage in argon and hydrogen (20 vol.% H2/Ar) were CO and CO2, whereas in air (20 vol.% O2/Ar) only CO2 was identified. Under the oxidising as well as reducing atmospheres the influence of secondary reactions on the composition of both, solid and gaseous products was found particularly strong during the third stage of the process. The studies of the multistage decomposition of HACOT, additionally complicated by many secondary reactions, required application of the hyphenated TA-MS or TA-FT-IR techniques combined with the pulse thermal analysis PTA® allowing quantification of the spectroscopic signals and investigation of gas-solid and gas-gas reactions in situ.  相似文献   

10.
The conditions of thermal decomposition of scandium(III) hemimellitate, trimellitate and trimezinate in air and nitrogen atmospheres have been studied. On heating, the benzene-tricarboxylates of Sc(III) decompose in two stages. First, the hydrated complexes lose crystallization water; heating in air finally yields Sc2O3, and heating in a nitrogen atmosphere Sc2O3 and C. The dehydration of the complexes is associated with strong endothermic effects. The decomposition of benzenetricarboxylates in air is accompanied by an exothermic effect and in nitrogen by an endothermic effect. The activation energies of the dehydration and decomposition reactions have been calculated for the Sc(III) benzenetricarboxylates.  相似文献   

11.
As cesium hexanitratouranium(IV), Cs2U(NO3)6, has the same Cs:U stoichiometry as that of Cs2UO4, thermal decomposition of this nitrato complex in air and nitrogen was studied in detail as a possible alternate method of preparing pure Cs2UO4. The volatility of cesium nitrate, which is one of the intermediate products, changed this Cs:U ratio during thermal decomposition. Hence, only Cs2U2O7 was obtained on heating the sample to 775 K or higher. A scheme for the thermal decomposition of Cs2U(NO3)6 is given by combining the observed TG, XRD and IR data.  相似文献   

12.
Thermal decomposition of UO4·2NH3·2HF was studied under high vacuum and in different gas atmospheres (N2, O2, synth. air). Gaseous decomposition products were analyzed and recorded using a quadrupole mass spectrometer.By discussing TG and MS data as well as X-ray analysis of intermediate products an attempt is made, to explain decomposition mechanisms under varied experimental conditions.Thermal decomposition strongly supports the results of X-ray analysis leading to the formula UO4·2NH3·2HF.  相似文献   

13.
Two types of ammonium uranyl nitrate (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3, were thermally decomposed and reduced in a TG-DTA unit in nitrogen, air, and hydrogen atmospheres. Various intermediate phases produced by the thermal decomposition and reduction process were investigated by an X-ray diffraction analysis and a TG/DTA analysis. Both (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 decomposed to amorphous UO3 regardless of the atmosphere used. The amorphous UO3 from (NH4)2UO2(NO3)4·2H2O was crystallized to γ-UO3 regardless of the atmosphere used without a change in weight. The amorphous UO3 obtained from decomposition of NH4UO2(NO3)3 was crystallized to α-UO3 under a nitrogen and air atmosphere, and to β-UO3 under a hydrogen atmosphere without a change in weight. Under each atmosphere, the reaction paths of (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 were as follows: under a nitrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; under an air atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; and under a hydrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → α-U3O8 → UO2, NH4 UO2(NO3)3 → A-UO3 → β-UO3 → α-U3O8 → UO2.  相似文献   

14.
The mechanism of hexane decomposition under gliding arc gas discharge conditions is studied from both qualitative and quantitative analyses of its products for various hexane initial concentrations and different background atmospheres : nitrogen, argon, air (O2 21% N2 79% vol.) and N2–O2 mixtures. The decomposition rate, which decreases with increasing hexane initial concentration, can reach 94% when the carrier gas is air. Due to the electron energy consumed by the dissociation of nitrogen, the decomposition rate of hexane in nitrogen is lower than in argon. The radical channel plays a predominant role in the hexane decomposition process. With increasing oxygen concentration in the carrier gas, the hexane decomposition rate increases and promotes the conversion of CO– CO2, but it also leads to the formation of NO2.  相似文献   

15.
On the basis of consideration of dissociation, hydration, association, and ligand exchange, the assignment of absorption bands in the electronic spectra of aqueous solutions of the Na4[UO2(O2)CO3)2] complex has been performed. It has been demonstrated that the absorption in the range 190–400 nm is caused by the oxygen atoms of the O22- and CO32- groups and hydration water molecules of dissociated and neutral complex species Na3[UO2(O2)(CO3)2], Na2[UO2(O2)(CO3)2]2–, and Na4[UO2(O2)(CO3)2].  相似文献   

16.
The nature and the extent of degradation of poly(hydroxy ether of bisphenol-A) phenoxy resin were analysed by thermogravimetry (TGA/DTGA) under nitrogen and air atmosphere. Decomposition kinetics were elucidated according to Flynn-Wall-Ozawa, Friedman and Kissinger methods. The evolved gases during degradation were inspected by a thermogravimetry analyser coupled with Fourier Transform Infrared Spectrometer (TGA/FTIR) and also with a TGA coupled to a Mass Spectrometer (TGA/MS). Mass spectra showed that chemical species evolved in phenoxy decomposition in air were very similar to those assigned from degradation in nitrogen (water, methane, CO, CO2, phenol, acetone, etc.). However, these species appear in different amount and at different temperatures in both atmospheres. FTIR analysis of the evolved products showed that water and methane were the beginning decomposition products, indicating that decomposition is initiated by dehydration and cleavage of C-CH3 bond in the bisphenol-A unit of phenoxy resin. After this initial stage, random chain scission is the main degradation pathway. Nevertheless, in air atmosphere, previously the complete decomposition of the phenoxy obtaining fundamentally CO2, and water, the formation of an insulated surface layer of crosslinked structures has been proposed.  相似文献   

17.
The oxidation of UO2 was investigated by TG, DSC and X-ray diffraction . UO2 samples were prepared by the reduction of UO3 at PH2 + PN2 = 100 + 50 mm Hg and 5°C min?1 up to 800°C. In order to obtain six UO2 samples with different preparative histories, UNH, UAH and ADU were used as starting materials and their thermal decomposition was carried out at 450–625°C for 0–9 h at an air flow rate of 100 ml min?1. α-UO3, γ-UO3, UO3 - 2 H2O, and their mixtures were obtained. The reduction of UO3 gave β-UO2+x with different x values from 0.030 to 0.055. The oxidation carried out at PO2 = 150 mm Hg was found to consist of oxygen uptake at room temperature. UO2 - U3O7 (Step I) and U3O7 → U3O8 (Step II). TG and DSC curves of the oxidation showed two plateaus and two exothermic peaks corresponding to Steps I and II. In the case of two of the samples, the DSC peak of Step II split into two substeps, which were assumed to be due to the different reactivities of U3O- formed from α-CO3 and that from other types of UO3. The increase in O/U ratio due to the oxygen uptake at room temperature changed from 0.010 to 0.042 except for a sample prepared from ADU which showed an extraordinarily large value of 0.445. TG curves showed an increase in O/U from room temperature to near 250°C for Step I and the plateau at 250–350°C where O/U was about 2.42, and showed a sharp increase in O/U above 350°C for Step II and the plateau above 100°C where O/U was 2.72–2.75. It is thought that the prepared UO2 had a defective structure with a large interstitial volume to accommodate the excess oxygen.  相似文献   

18.
The non-isothermal experiments of limestone decomposition at multi-heating rates in O2/N2 and O2/CO2 atmospheres were studied using thermogravimetry. The limestone decomposition kinetic model function, kinetic parameters of apparent activation energy (E), and pre-exponential factor (A) were evaluated by Bagchi and Malek method. The results shown that in 20 % O2/80 % N2 atmosphere, the limestone decomposed slowly following the contracting sphere volume model controlled by boundary reaction (spherical symmetry) in two stages, and the E increased by about 50 kJ mol?1 in the second decomposition stage. But in 20 % O2/80 % CO2 atmosphere, the presence of high-concentration CO2 significantly inhibited the limestone decomposition, and made the decomposition process occur at high temperature with a rapid rate; the decomposition kinetics was divided into three stages, the first stage was an accelerated decomposition process following the Mampel Power law model with the exponential law equation, the second stage followed the nth order chemical reaction model as an αt deceleration process, and the third stage belonged to the random nucleation and nuclei growth model with the Avrami–Erofeev equation. And with the heating rate increasing, the reaction order n showed a slight rise tendency. The E was about 1,245 kJ mol?1 in 20 % O2/80 % CO2 atmosphere, but was only about 175 kJ mol?1 in 20 % O2/80 % N2 atmosphere. The E and A increased markedly in the O2/CO2 atmosphere.  相似文献   

19.
The thermal decomposition of UO2NH4PO4 · 3H2O and UO2HPO4 · 4H2O was studied in the temperature range 25–1600?C. Both compounds gave U2O3P2O7 around 900?C after a two step dehydration and an orthophosphate-pyrophosphate transformation. UO2NH4PO4 · 3H2O did not form any pure intermediates, but (UO2)2P2O7 could be prepared from UO2HPO4 · 4H2O. In air, U2O3P2O7 lost phosphorus above 1250?C. In argon, (UO)2P2O7 was first formed between 1000 and 1290?C and this product only lost phosphorus at still higher temperatures. (UO)2P2O7 was also obtained by reduction of (UO2)2P2O7 or U2O3P2O7 at 700?C in H2 or with carbon black in argon above 1000?C. It oxidised in air above 250?C with the formation of U2O3P2O7.  相似文献   

20.
The oxo-diperoxo-molibdenum(VI)-potassium oxalate, K2[MoO(O2)2(C2O4)] was synthesized using an adapted version of the method suggested by Dengel. The thermal behavior of the synthesized complex was investigated by simultaneous thermal analysis TG/DTG/DTA, in air or nitrogen atmosphere, to identify and characterize the mass-loss decomposition processes. In addition, for the characterization of the observed decomposition steps, the FT-IR spectra for the initial complex, evolved gaseous compounds and isolated complex at 230 and 430/383 °C in air/nitrogen atmosphere, were recorded. On the 35–500 °C temperature range, the K2[MoO(O2)2(C2O4)] complex presented three main decomposition steps, accompanied by mass-loss. The first degradation step is due to the elimination of one oxygen molecule, by the breaking of the peroxo groups, with the formation of an intermediary, like [MoO3L]. The other two degradation steps can be attributed to the decomposition of the organic ligand, with the final formation of a stable metallic oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号