首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is the synthesis and characterization of hybrid coatings doped with cerium salts for corrosion protection of AA2024. The control of the inorganic and organic polymerization process allows the preparation of coatings with an open structure and a hydrophilic character. These facts facilitate the incorporation and mobility of cerium ions through the structure, enhancing its ability to promote a self-healing mechanism. The thermal treatment of the coatings has been limited to 120 °C to preserve the mechanical properties of the alloy. The electrochemical behaviour of the coatings has been evaluated in 0.3 wt% NaCl solution by means of EIS technique. Electrochemical measurements evidence good barrier properties at initial immersion time, and signals of corrosion inhibition from cerium ions at long immersion times could be assigned to the increasing of the impedance modulus at low frequencies and the presence of cerium oxide/hydroxide precipitates.  相似文献   

2.
The protective capabilities of sol–gel coatings are determined by their physical barrier properties. For an effective protection, a homogenous crack-free material is required, which prevents from attacks of corrosive species. When the coating is damaged, active corrosion protection is usually achieved by the use of inhibitors. Among the different inhibitors rare earth ions and especially cerium have shown effective inhibiting properties. Due to the complexity of the corrosion processes, a combination of inhibitors is expected to be superior to a monocomponent inhibiting. The aim of this study was to prove which other ions, used in combination with cerium, can improve the corrosion protection abilities of hybrid silica based inorganic–organic sol–gel coatings applied on aluminium alloy 2024 substrates. Mixtures of cerium nitrate with two other potential inhibitor substances were incorporated into a sol–gel matrix and their behaviour in neutral salt spray test and during EIS measurements was investigated. The Ce–P–Pr inhibitor combination (Ce3+, PO4 3−, Pr3+) has shown the best long-term corrosion protection properties at low doping levels.  相似文献   

3.
A novel diureapropyltriethoxysilane [bis(aminopropyl)-terminated-poly(dimethylsiloxane) (1000)] (PDMSU) sol-gel hybrid was synthesized and applied on cotton to make it water repellent. Surface-energy values of PDMSU deposited on an aluminum substrate were determined, and the contact angle for water was assessed for impregnated cotton fabrics. The stability of the coatings was determined by repetitive washing, and their degradation was investigated with the help of the infrared attenuated total reflection (ATR) technique. The structure of PDMSU was studied by ATR and 29Si NMR spectroscopy. The results showed the active role of the urea groups in PDMSU/cotton interface bonding, but washing led to the relaxation of the urea-urea associations, as inferred from the appearance of a new amide II band at 1541 cm(-1).  相似文献   

4.
Advancements in the area of conducting polymers have been towards their application as effective corrosion protective coatings to replace the use of heavy metals as additives in the coatings industries, which are now considered to be an environmental as well as health hazard. With the aim to utilize a sustainable resource based polymer for the development of an anti‐corrosive conducting coating material, coconut oil based conducting blend coatings of polyaniline and poly(esteramide urethane) were prepared by loading different ratios (2, 4 and 8 wt%) of polyaniline in poly(esteramide urethane). Then their physico‐chemical, thermal, morphological, conductivity and anti‐corrosive coating characteristics were investigated. The effect of a 2 year environmental aging process on the coated samples was analyzed by thermal methods as well as by corrosion studies. Results showed that the corrosion protective performance of the blend coatings was far superior than that of plane poly(esteramide urethane). These coatings showed enhanced corrosion protection in acid as well as alkaline environments upto 360 and 192 hr respectively. Conductivity of the blends was found to be in the range 2.5 × 10?5–5.7 × 10?4 S/cm?1. An increase in the thermal stability of the blend coatings and a decrease in their conductivity was noticed in the aged samples which was attributed to the crosslinking effect. The corrosion protective performance of the coatings remained almost unaffected even after 2 years of aging. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Scratch testing has been performed on elastomeric poly(dimethylsiloxane) (PDMS) coatings on stainless steel with a spherical indenter. The friction coefficient (horizontal‐to‐normal force ratio) during scratching decreases with increasing normal load. This result can be explained by assuming that during scratching the contact area is determined by elastic deformation and the horizontal force is proportional to the contact area. With increasing driving speed, the friction coefficient increases, but the rate of increase decreases; this suggests that the scratching of the PDMS coating is a rate process and that the viscoelastic property of the coating influences its frictional behavior. Below a critical normal load, which increases with the coating thickness, the PDMS coating recovers elastically after being scratched so that there are no scratch marks left behind. Above the critical normal load, the coating is damaged by a combination of delamination at the coating/substrate interface and through‐thickness cracking. When the coating is damaged, there is an increase in the friction coefficient, and the friction force displays significant fluctuations. Furthermore, the critical normal load increases with the driving speed; this implies that time is needed to nucleate damage. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1530–1537, 2002  相似文献   

6.
A novel bifunctional polyhedral oligomeric silsesquioxane (POSS) based silane precursor R(x)R'(y)(SiO(3/2))(8), (x + y = 8), bearing 3-(N-(3-triethoxysilylpropyl)ureido)propyl (ureasil - U) and isooctyl (IO) groups (i.e., U(2)IO(6) POSS) was synthesized, and the corresponding coatings, prepared under the acid hydrolysis conditions, were studied in order to assess their corrosion inhibition of the AA 2024-T3 alloy. The U(2)IO(6) POSS precursor was made in two steps: in the first, an appropriate stoichiometric (2:6) mixture of 3-aminopropyltriethoxysilane (AP(2)) and isooctyltrimethoxysilane (IO(6)) was autoclaved under basic hydrolysis conditions giving AP(2)IO(6)(SiO(3/2))(8) cubes, which were reacted in the second step with 3-isocyanatopropyltriethoxysilane (ICPTES), leading to the bis end-capped sol-gel precursor U(2)IO(6) POSS having a cube-like structure. Coatings were made from sols catalyzed with acidified water. IR and (29)Si NMR spectroscopic studies combined with mass spectrometric measurements were employed to confirm the cube-like structure of AP(2)IO(6) and U(2)IO(6) POSS. The structure and morphology of the U(2)IO(6) POSS coatings were studied with the help of infrared reflection-absorption (IR RA) spectroscopic measurements combined with XPS and AFM measurements, providing information about the formation of partially self-assembled coatings. The degree of corrosion inhibition was assessed from the potentiodynamic measurements showing around 10 times smaller current densities for the coatings only 30-40 nm thick. Ex situ IR RA spectroelectrochemical measurements were performed by consecutive measurements of the IR RA spectra of U(2)IO(6) POSS coatings which were chronocoulometrically charged at different potentials. At potentials more positive than the corrosion potential (E(corr) approximately -0.5 V), the amide I bands shifted, indicating the formation of new urea-urea aggregations and associations, with the newly formed strong band at 1680-1690 cm(-1) suggesting the formation of amidonium ions. These results showed that the urea groups represented the weakest part of the coatings due to their tendency to protonation.  相似文献   

7.
We describe a simple and versatile method for bonding thermoplastics to elastomeric polydimethylsiloxane (PDMS) at room temperature. The bonding of various thermoplastics including polycarbonate (PC), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), and polystyrene (PS), to PDMS has been demonstrated at room temperature. An irreversible bonding was formed instantaneously when the thermoplastics, activated by oxygen plasma followed by aminopropyltriethoxysilane modification, were brought into contact with the plasma treated PDMS. The surface modified thermoplastics were characterized by water contact angle measurements and X-ray photoelectron spectroscopy. The tensile strength of the bonded hybrid devices fabricated with PC, COC, PMMA, and PS was found to be 430, 432, 385, and 388 kPa, respectively. The assembled devices showed high burst resistance at a maximum channel pressure achievable by an in-house built syringe pump, 528 kPa. Furthermore, they displayed very high hydrolytic stability; no significant change was observed even after the storage in water at 37 °C over a period of three weeks. In addition, this thermoplastic-to-PDMS bonding technique has been successfully employed to fabricate a relatively large sized device. For example, a lab-on-a-disc with a diameter of 12 cm showed no leakage when it spins for centrifugal fluidic pumping at a very high rotating speed of 6000 rpm.  相似文献   

8.
9.
This paper describes a simple method for the effective and rapid separation of hydrophobic molecules on polydimethylsiloxane (PDMS) microfluidic devices using Micellar Electrokinetic Chromatography (MEKC). For these separations the addition of sodium dodecyl sulfate (SDS) served two critical roles - it provided a dynamic coating on the channel wall surfaces and formed a pseudo-stationary chromatographic phase. The SDS coating generated an EOF of 7.1 x 10(-4) cm(2) V(-1) s(-1) (1.6% relative standard deviation (RSD), n = 5), and eliminated the absorption of Rhodamine B into the bulk PDMS. High efficiency separations of Rhodamine B, TAMRA (6-carboxytetramethylrhodamine, succinimidyl ester) labeled amino acids (AA), BODIPY FL CASE (N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)cysteic acid, succinimidyl ester) labeled AA's, and AlexaFluor 488 labeled Escherichia coli bacterial homogenates on PDMS chips were performed using this method. Separations of Rhodamine B and TAMRA labeled AA's using 25 mM SDS, 20% acetonitrile, and 10 mM sodium tetraborate generated efficiencies > 100,000 plates (N) or 3.3 x 10(6) N m(-1) in <25 s with run-to-run migration time reproducibilities <1% RSD over 3 h. Microchips with 30 cm long serpentine separation channels were used to separate 17 BODIPY FL CASE labeled AA's yielding efficiencies of up to 837,000 plates or 3.0 x 10(6) N m(-1). Homogenates of E. coli yielded approximately 30 resolved peaks with separation efficiencies of up to 600,000 plates or 2.4 x 10(6) N m(-1) and run-to-run migration time reproducibilities of <1% RSD over 3 h.  相似文献   

10.
Surface modifications of microfluidic devices are of essential importance for successful bioanalytical applications. Here, we investigate three different coatings for quartz and poly(dimethylsiloxane) (PDMS) surfaces. We employed a triblock copolymer with trade name F108, poly(l-lysine)-g-poly(ethylene glycol) (PLL-PEG), as well as the hybrid coating n-dodecyl-β-d-maltoside and methyl cellulose (DDM/MC). The impact of these coatings was characterized by measuring the electroosmotic flow (EOF), contact angle, and prevention of protein adsorption. Furthermore, we investigated the influence of static coatings, i.e., the incubation with the coating agent prior to measurements, and dynamic coatings, where the coating agent was present during the measurement. We found that all coatings on PDMS as well as quartz reduced EOF, increased reproducibility of EOF, reduced protein adsorption, and improved the wettability of the surfaces. Among the coating strategies tested, the dynamic coatings with DDM/MC and F108 demonstrated maximal reduction of EOF and protein adsorption and simultaneously best long-term stability concerning EOF. For PLL-PEG, a reversal in the EOF direction was observed. Interestingly, the static surface coating strategy with F108 proved to be as effective to prevent protein adsorption as dynamic coating with this block copolymer. These findings will allow optimized parameter choices for coating strategies on PDMS and quartz microfluidic devices in which control of EOF and reduced biofouling are indispensable.  相似文献   

11.
This study has been conducted to investigate the effects of plastic deformation of an AA2024 aluminium alloy by cold rolling to 25%, 50% and 75% and then heat-treating and naturally ageing for 20 days to T4 on the microstructure and the electrochemical behavior. To characterize the microstructural modifications different techniques have been applied such as X-ray Diffraction (XRD) to demonstrate the intermetallic phases formed, Optical Microscopy (OM) and Scanning Electronic Microscopy (SEM) to evaluate their microstructures and grain size. Moreover, the surface topography has been measured to establish the roughness effect on the mechanical response when subjected to tensile, fatigue and micro-indentation tests. The corrosion behaviour was evaluated by Potentiodynamic Polarization Scanning, Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The results revealed that cold-rolled samples with 50% plastic deformation show a smoother topography and exhibit the best compromise between mechanical and corrosion resistance.  相似文献   

12.
Aluminium alloys such as AA2024 are susceptible to severe corrosion attack in aggressive solutions (e.g. chlorides). Conversion coatings, like chromate, or rare earth conversion coatings are usually applied in order to improve corrosion behaviour of aluminium alloys. Methacrylate‐based hybrid films deposited with sol–gel technique might be an alternative to conversion coatings. Barrier properties, paint adhesion and possibly self‐healing ability are important aspects for replacement of chromate‐based pre‐treatments. This work evaluates the behaviour of cerium as corrosion inhibitor in methacrylate silane‐based hybrid films containing SiO2 nano‐particles on AA2024. Hybrid films were deposited on aluminium alloy AA2024 by means of dip‐coating technique. Two different types of coating were applied: a non‐inhibited film consisting of two layers (non‐inhibited system) and a similar film doped with cerium nitrate in an intermediate layer (inhibited system). The film thickness was 5 µm for the non‐inhibited system and 8 µm for the inhibited system. Film morphology and composition were investigated by means of GDOES (glow discharge optical emission spectroscopy). Moreover, GDOES qualitative composition profiles were recorded in order to investigate Ce content in the hybrid films as a function of immersion time in 0.05 M NaCl solution. The electrochemical behaviour of the hybrid films was studied in the same electrolyte by means of EIS technique (electrochemical impedance spectroscopy). Electrochemical measurements provide evidence that the inhibited system containing cerium displays recovery of electrochemical properties. This behaviour is not observed for the non‐inhibited coating. GDOES measurements provide evidence that the behaviour of inhibited system can be related to migration of Ce species to the substrate/coating interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Journal of Sol-Gel Science and Technology - In this study, the Taguchi method was used to design of experiment to obtain optimum conditions for hybrid Si–Zr sol–gel coating doped with...  相似文献   

14.
In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus stabilize the laminar flow profile. The polymers poly(2-hydroxyethyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene glycol), and poly(vinyl alcohol) were assessed for their quality as stabilization coatings after deposition from flowing and stationary solutions. Additionally, the influence of coating the microchannels homogeneously with a single kind of polymer or heterogeneously with two different polymers was investigated. From the experimental observations, it can be concluded that homogeneous polymer coatings with poly(2-hydroxyethyl methacrylate) and poly(vinyl pyrrolidone) led to the effective stabilization of laminar water/octanol flows. Furthermore, heterogeneous coatings led to two-phase flows which had a better-defined and more stable interface over long distances (i.e., 40-mm-long microchannels). Finally, the partitioning of fuchsin dye in the coated microchannels was demonstrated, establishing the feasibility of the use of the polymer-coated PDMS microchannels for determination of logP values in laminar octanol/water flows.  相似文献   

15.
16.
Varifocal micromirrors are alternative and miniaturized mirror systems that are used for imaging procedures in biomedical diagnostics, mirror-based tunable lenses, or the correction of spherical aberration. In this study, we demonstrate a new concept for focal length variation by electrostatic mirror deformation of a compact and integrated electroactive polymer actuator based on metallized poly(dimethylsiloxane) (PDMS) gel thin films. The varifocal micromirrors have a lateral size of 70 × 70 μm2 and are capable of deforming in either convex or concave direction, depending on a defined surface treatment by O2-plasma or UV/ozone of the PDMS prior to metallization by physical vapor deposition (PVD). Surface and interface analysis by wetting experiments, sputter depth-profiling X-ray photoelectron spectroscopy (XPS) combined with scanning electron microscopy (SEM) on cross-sections processed with focused ion beam (FIB) as well as polymer and metal surfaces are used to understand and to improve the metal film growth and quality with respect to high reflectivity and conductivity. In addition to the high quality of the metallic mirror layer, the mirror displacement is important and inevitably depends on the gel stiffness of the actuator. Therefore, we investigate the gel mechanics and the performance of the actuator with rheology, confocal microscopy, and image formation on the electrically deformed mirrors. Our concept of varifocal micromirrors offers a wide range of applications for tunable mirror-based optics due to their simple and compact design.  相似文献   

17.
Preferential solvation λ parameters for the ternary systems benzene-methanol-poly(dimethylsiloxane) and benzene-methanol-poly(methyl methacrylate) have been determined by gel permeation chromatography. When benzene is preferentially adsorbed by the polymer, good agreement is found between λ values determined by this method and by light scattering and dialysis equilibrium. However, when methanol is preferentially adsorbed by the polymer, discrepancies arise. The differences are discussed in terms of interactions between the solvent and the chromatographic support.  相似文献   

18.
CPMAS-DD 13C NMR spectroscopy was used to examine the mobility of poly(dimethylsiloxane) adsorbed on silica gel (PDMS/SiO2) at submonolayer coverages. The spin-lattice relaxation time in the rotating frame (T1ρH) decreased linearly with increasing loading. This is consistent with a decrease in the mobility of the polymer segments as the loading is increased. The decrease in mobility results from interpolymer interference. We propose a model that explains these results in terms of a surface intrinsic viscosity that incorporates the polymer-polymer interactions on the surface.  相似文献   

19.
20.
Poly(dimethylsiloxane) copolymers containing a small fraction of carboxylic acid or Zn‐carboxylate groups were prepared and compared regarding reversible gelation by hydrogen‐bonding and ion‐pair interaction. The polymers were synthesized by condensation of a t‐butylcarboxylate functionalized dichlorosilane with an α,ω‐dihydroxy‐poly(dimethylsiloxane), followed by thermal cleavage of the ester bond. Neutralization of the resulting carboxylic acid substituents was achieved by addition of Zn (acac)2. Reversible crosslinking was investigated by step stress and oscillating shear experiments. The carboxylic acid containing poly(dimethylsiloxane) became rubberlike upon increasing the temperature and liquified again when it was brought back to room temperature. This observation has been explained tentatively by segregation of the carboxylic acid groups into polar domains at high temperatures [i.e., a behavior like it is observed for systems with a lower critical solution temperature (LCST)]. At ambient temperature, the carboxylic acid groups undergo hydrogen bonding to the Si–O–Si backbone. Clustering of the carboxylic acid groups occurs only as these hydrogen bonds break upon raising temperature. Moisture was found to have a strong influence on the reversal of the crosslinking. Addition of zinc acetylacetonate resulted in the formation of an elastic network already at ambient conditions consistent with the concept of ionomers which undergo reversible gelation by formation of ion‐pair multiplets and clusters in the hydrophobic polymer matrix in particularly at low temperatures. At high temperature, both the carboxylic acid and the carboxylate sample exhibited a rather similar viscoelastic behavior consistent with a common structure where transient crosslinks are formed by clusters of the carboxylic acid and the carboxylate groups. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 485–495, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号