首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with good uniformity and dispersion were prepared by electrochemical polymerization of aniline containing well-dissolved SWNTs. The composite films were dispersed Pt by electrodeposition technique. The presence of SWNTs and platinum in the composite film was confirmed by XRD analysis and scanning electron microscopy (SEM). Four-point probe investigation and electrochemical impedance spectroscopy (EIS) revealed that the well arrangement of PANI coated SWNTs in these films enhanced electric conductivity and facilitated the charge-transfer of the composite films. Cyclic voltammogram (CV) and chronoamperogram showed that Pt-modified SWNT/PANI composite film performs higher electrocatalytic activity and better long-term stability than Pt-modified pure PANI film toward formaldehyde oxidation. The results imply that the SWNT/PANI composite film as a promising support material improves the electrocatalytic activity for formaldehyde oxidation greatly.  相似文献   

2.
简要回顾了单壁碳纳米管的发现及研究现状,介绍了一种新颖的悬空单壁碳纳米管的制备方法;在此基础上,通过新的一种四电极方法,用实验证明水分子可以进入两端开口的单壁碳纳米管内,由于水分子偶极子与碳纳米管中载流子的相互产生相互耦合作用,载流子的定向运动(电流)可以使水产生定向运动(纳米马达);同时,水的运动又会使碳纳米管中的载流子产生定向运动而产生一个电动势(纳米发电机).  相似文献   

3.
In this work, the influence factors, namely chirality, temperature, radius and surface chemical modification, of the interaction energy for polyethylene (PE) molecule encapsulated into single-walled carbon nanotubes (SWNTs) had been investigated by molecular mechanics (MM) and molecular dynamics (MD) simulation. The results showed that all these factors would influence the interaction energy between PE and SWNTs. The interaction energy between PE molecule and the armchair SWNTs is largest among eight kinds of chiral SWNTs. The interaction energy decreases with the increase of temperature or the SWNT radius. The methyl, phenyl, hydroxyl, carboxyl, -F, and amino groups, have been introduced onto the surface of the SWNTs by the simulation software and the influence of SWNT chemical modification has also been investigated. The interaction energy between PE and chemically modified SWNTs is larger than that between PE and pristine SWNTs, and increases with increasing the concentration of the modified groups monotonously. In addition, the group electronegativity and van der Waals force will affect the interaction energy between PE and chemically modified SWNTs greatly, which can be attributed to the electronic structures of the chemically modified groups. This study can provide some useful suggestions for the composite material design and drug transport.  相似文献   

4.
We report a comparative study on diameter distribution of single-walled carbon nanotubes (SWNTs) grown using nanoporous templates having different pore sizes, namely, zeolite-L, ZSM-5, and MCM-41. The change in the tube diameter based on catalytic film thickness and growth temperature was systematically investigated. We prepared very thin Fe catalyst films with nominal thicknesses of 0.5, 0.7, 1, and 2 Å, and the growth temperature was varied from 850 to 925 °C. We found that the SWNT mean diameter and size distribution width decreased with decreasing catalyst film thickness, growth temperature, and pore sizes of the templates. In addition, all SWNTs grown from the nanoporous templates have narrower diameter distribution compared to the SWNTs grown from SiO2 planar surface. The obtained results are straightforward and suggest that the template growth has potential for SWNT growth with very narrow diameter distribution.  相似文献   

5.
Yoo S  Jung Y  Lee DS  Han WT  Oh K  Murakami Y  Edamura T  Maruyama S 《Optics letters》2005,30(23):3201-3203
Optical anistropy at optical communication wavelength was observed in films of vertically aligned single-walled carbon nanotubes (SWNTs). We report the control of both the polarization state and transmission of incoming light at 1550 nm by azimuthal and axial tilting of SWNT film about its aligned axis. The experiments reveal that the polarization state of light is susceptible to the azimuthal angle of the aligned direction of a SWNT having semiconductor characteristics and the intensity of the output beam after SWNT film shows cosine function dependence on the axial tilting angle.  相似文献   

6.
Anisotropic optical absorption properties of single-walled carbon nanotubes (SWNTs) are determined from a vertically aligned SWNT film for 0.5-6 eV. Absorption peaks at 4.5 and 5.25 eV are found to exhibit remarkable polarization dependence and have relevance to optical properties of graphite. A method for determining a nematic order parameter for an aligned SWNT film based on the collinear absorption peak at 4.5 eV is presented, followed by the determination of the optical absorption cross section.  相似文献   

7.
Discrete Co catalytic nanoparticles with small diameters are obtained by pulsed vacuum arc evaporation on Si/SiO2 substrates, which are used for the growth of isolated single-walled carbon nanotubes (SWNTs) by an ethanol chemical vapor deposition approach (CVD). The distributions of catalytic nanoparticles change with the number of arc pulses, which allows control of the nanotubes formation. We find that an increase of ethanol pressure during CVD growth can change SWNTs from isolated ones into bundles. A new growth mechanism which combines a tip and base model for SWNT growth has been tentatively proposed. It is suggested that the small size catalytic particles prepared by pulsed arc evaporation have a potential advantage for small diameter SWNT growth. PACS 78.67.Ch; 78.67.Bf; 78.67.-n; 81.07.De; 61.46.-w  相似文献   

8.
Resonance Raman studies on single wall carbon nanotubes (SWNTs) show that resonance with cross polarized light, i.e., with the E(mu,mu+/-1) van Hove singularities in the joint density of states needs to be taken into account when analyzing the Raman and optical absorption spectra from isolated SWNTs. This study is performed by analyzing the polarization, laser energy, and diameter dependence of two Raman features, the tangential modes (G band) and a second-order mode (G' band), at the isolated SWNT level.  相似文献   

9.
Excited-state lifetimes of isolated single-walled semiconducting carbon nanotubes (SWNTs) have been measured for the first time; these excited states, observed over the 400- to 1800-nm spectral domain, possess lifetimes that range from several ps to more than 100 ps. Sub-ps to ps decay components are assigned to relaxation in SWNT bundles. Interrogation of the samples with different SWNT mean diameters further confirms the dependence of the excited-state lifetime on roll-up vector. The ratio of fast and slow decaying component contributions in the first van Hove band can be viewed as a measure of the bundle content. PACS 78.67.Ch; 78.47.+p; 61.46.+w; 73.22.-f  相似文献   

10.
The motion and equilibrium distribution of water molecules adsorbed inside neutral and negatively charged singlewalled carbon nanotubes (SWNTs) have been studied using molecular dynamics simulations (MDSs) at room temperature based on CHARMM (Chemistry at HARvard Molecular Mechanics) potential parameters. We find that water molecules have a conspicuous electropism phenomenon and regular tubule patterns inside and outside the charged tube wall. The analyses of the motion behaviour of water molecules in the radial and axial directions show that by charging the SWNT, the adsorption efficiency is greatly enhanced, and the electric field produced by the charged SWNTs prevents water molecules from flowing out of the nanotube. However, water molecules can travel through the neutral SWNT in a fluctuating manner. This indicates that by electrically charging and uncharging the SWNTs, one can control the adsorption and transport behaviour of polar molecules in SWNTs for using as a stable storage medium or long transport channels. The transport velocity can be tailored by changing the charge on the SWNTs, which may have a further application as modulatable transport channels.  相似文献   

11.
Poly(diallyldimethylammonium chloride)/single-walled carbon nanotube (PDDA/SWNT) multilayered thin films were prepared on quartz crystal microbalance by layer-by-layer self-assembly technique, and their sensing properties to humidity were studied. The SWNTs were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The composite films were observed by field-emission scanning electron microscope. Two types of SWNT humidity sensors were fabricated using SWNTs and carboxyl (COOH) modified SWNTs as sensitive material, respectively. The results showed that the sensitivity of the PDDA/SWNT?CCOOH humidity sensor was 20.23?% higher than that of the PDDA/SWNT sensor. In contrast, the latter had a much superior hysteresis property, and the reason to cause this phenomenon was discussed.  相似文献   

12.
The field-emission mechanism of open-ended single-walled carbon nanotubes (SWNTs) is studied. Owing to electronic effects that directly alter the bonding mode and remarkably influence the work function, an open-ended SWNT has much better field-emission properties than a closed SWNT; owing to geometrical effects that slightly influence the work function and the amplification factor, an open-ended SWNT with relaxation has higher threshold voltage and higher current density compared to one without relaxation. It is suggested that adjusting the localized electronic states of the emitting regions, by electronic and geometrical means, could improve the field-emission properties of carbon nanotubes.  相似文献   

13.
Following on from our previous report that a monochlorobenzene solution of polymethylmethacrylate is useful for purifying and cutting single-wall carbon nanotubes (SWNTs) and thinning SWNT bundles, we show in this report that polymer and residual amorphous carbon can be removed by burning in oxygen gas. The SWNTs thus obtained had many holes (giving them a worm-eaten look) and were thermally unstable. Such severe damage caused by oxidation is unusual for SWNTs; we think that they were chemically damaged during ultrasonication in the monochlorobenzene solution of polymethylmethacrylate. Received: 28 March 2001 / Accepted: 2 August 2001 / Published online: 17 October 2001  相似文献   

14.
The capability of anti‐Stokes/Stokes Raman spectroscopy to evaluate chemical interactions at the interface of a conducting polymer/carbon nanotubes is demonstrated. Electrochemical polymerisation of the monomer 3,4‐ethylenedioxythiophene (EDOT) on a Au support covered with a single‐walled carbon nanotube (SWNT) film immersed in a LiClO4/CH3CN solution was carried out. At the resonant optical excitation, which occurs when the energy of the exciting light coincides with the energy of an electronic transition, poly(3,4‐ethylenedioxythiophene) (PEDOT) deposited electrochemically as a thin film of nanometric thickness on a rough Au support presents an abnormally intense anti‐Stokes Raman spectrum. The additional increase in Raman intensity in the anti‐Stokes branch observed when PEDOT is deposited on SWNTs is interpreted as resulting from the excitation of plasmons in the metallic nanotubes. A covalent functionalisation of SWNTs with PEDOT both in un‐doped and doped states takes place when the electropolymerisation of EDOT, with stopping at +1.6 V versus Ag/Ag+, is performed on a SWNT film deposited on a Au plate. The presence of PEDOT covalently functionalised SWNTs is rationalised by (1) a downshift by a few wavenumbers of the polymer Raman line associated with the symmetric C C stretching mode and (2) an upshift of the radial breathing modes of SWNTs, both variations revealing an interaction between SWNTs and the conjugated polymer. Raman studies performed at different excitation wavelengths indicate that the resonant optical excitation is the key condition to observe the abnormal anti‐Stokes Raman effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Hydrophilic surface of carbon nanotubes (CNTs) are of great interest for various applications including chemical and biological sensing. Surface functionalization of single wall carbon nanotubes (SWNTs) mats with a biocompatible polymer polyvinyl alcohol (PVA) was studied. PVA modification induced a drastic change in water wettability of the SWNT surface transforming it from hydrophobic to highly hydrophilic. These PVA modified SWNTs mats have also demonstrated increasing impedance variation in relative humidity compared to the pristine nanotubes. An appreciable change in conductivity of Y-junction SWNT mats as a function of relative humidity indicates its potential application as humidity sensor. This higher sensitivity for humidity variation shown in Y-junction SWNT mats could be attributed to the greater portion of semiconducting nanotubes in these mats revealed by Raman analysis. A possible conductance changing mechanism of surface modified SWNTs mats is discussed.  相似文献   

16.
We report on the assembly of single-walled carbon nanotubes (SWNTs) and gold nanoparticles (NPs) hybrid structure without any surface modification of SWNTs on patterns of Au nanoparticles (NPs). Microscale Au NP patterns were created on composite self-assembled monolayer (SAM) templates of octadecanethiol (ODT) and octanedithiol (OD) through self-assembly of Au NPs via the thiol-Au chemical bond onto the OD region. On such templates, we observed extensive adhesion and strong affinity of SWNTs on the Au NPs and no SWNT on ODT. We also examined systematically the adhesion of SWNTs on ODT with varying coverage of vapour-deposited Au. We observed little SWNT attachment even when there are high-density of Au clusters on the ODT SAM. Extensive adhesion of SWNTs is observed only when the coverage of ODT by Au is almost complete. Dynamic contact angle measurements of dichlorobenzene on the ODT/Au substrates revealed a direct correlation between the surface wettability and the SWNT assembly on a molecular template.  相似文献   

17.
The chemical reactivity of carbon nanotubes in H2SO4 is investigated using individual, single-walled carbon nanotubes (SWNTs) incorporated into electronic devices. Exploiting the device conductance as a sensitive indicator of chemical reactions, discrete oxidation and reduction events can be clearly observed. During oxidation, a SWNT opens circuits to a nanometer-scale tunnel junction with residual conduction similar to Frenkel-Poole charge emission. When electrochemically reduced, a SWNT returns to its original conductance. This redox cycle can be repeated many times, suggesting a novel chemical method of reversibly switching SWNT conductivity.  相似文献   

18.
The switching of resistance between two discrete values, known as random telegraph noise (RTN), was observed in individual single-walled carbon nanotubes (SWNTs) and C60-filled SWNTs (the so-called peapods). The RTN has been studied as a function of bias-voltage and gate-voltage as well as temperature. By analyzing the features of the RTN, we identify three different types of RTN existing in the SWNT related systems. While the RTN can be generated by the various charge traps in the vicinity of the SWNTs, the RTN for metallic SWNTs is mainly due to reversible defect motions between two metastable states, activated by inelastic scattering with ballistic electrons. On the other hand, the noise for peapods can be attributed to the motion of C60 molecules in hollow space of SWNTs.  相似文献   

19.
Single-walled carbon nanotubes (SWNTs) have been grown on silicon nanowires (SiNWs) by ethanol chemical vapor deposition (CVD) with Co catalysts. We have found that a surface SiOx layer of SiNWs is necessary for the formation of active Co catalysts. In fact, the yield of the SWNT/SiNW heterojunctions gradually decreases as the thickness of the surface SiOx layer decreases. Since thin SiNWs are transparent to an electron beam, the Co nanoparticles on SiNWs can be easily observed as well as SWNTs by TEM. Therefore, the relationship between the diameters of each SWNT and its catalyst nanoparticle has been investigated. The diameters of SWNTs are equal to or slightly smaller than those of the catalyst nanoparticles.  相似文献   

20.
Single-walled carbon nanotubes (SWNTs) were prepared with ethanol chemical vapor deposition (CVD) on SiO2 flat and pillar-patterned Si substrates. The effect of CVD temperatures from 600 to 800 °C on SWNTs yields was investigated. By virtue of its unperturbed environment, an individual suspended SWNT grown between two different SiO2 pillars provides a possibility to study the phonon band structure of SWNT itself at a single-nanotube level. Raman spectra of individual SWNTs grown between pillars were investigated systematically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号