首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyketides are a diverse class of medically important natural products whose biosynthesis is catalysed by polyketide synthases (PKSs), in a fashion highly analogous to fatty acid biosynthesis. In modular PKSs, the polyketide chain is assembled by the successive condensation of activated carboxylic acid-derived units, where chain extension occurs with the intermediates remaining covalently bound to the enzyme, with the growing polyketide tethered to an acyl carrier domain (ACP). Carboxylated acyl-CoA precursors serve as activated donors that are selected by the acyltransferase domain (AT) providing extender units that are added to the growing chain by condensation catalysed by the ketosynthase domain (KS). The action of ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) activities can result in unreduced, partially reduced, or fully reduced centres within the polyketide chain depending on which of these enzymes are present and active. The PKS-catalysed assembly process generates stereochemical diversity, because carbon-carbon double bonds may have either cis- or trans- geometry, and because of the chirality of centres bearing hydroxyl groups (where they are retained) and branching methyl groups (the latter arising from use of propionate extender units). This review shall cover the studies that have determined the stereochemistry in many of the reactions involved in polyketide biosynthesis by modular PKSs.  相似文献   

2.
The biosynthesis and mode of attachment of a wide range of polyketide synthase (PKS) starter units in bacteria are covered in this review. Natural, unnatural, and engineered starter units associated with type I and type II PKSs are reported. The literature through early 2001 is reviewed, and 240 references cited.  相似文献   

3.
Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 ? germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.  相似文献   

4.
Trioxacarcins (TXNs) are highly oxygenated, polycyclic aromatic natural products with remarkable biological activity and structural complexity. Evidence from 13C-labelled precursor feeding studies demonstrated that the scaffold was biosynthesized from one unit of l-isoleucine and nine units of malonyl-CoA, which suggested a different starter unit in the biosynthesis. Genetic analysis of the biosynthetic gene cluster revealed 56 genes encoding a type II polyketide synthase (PKS), combined with a large amount of tailoring enzymes. Inactivation of seven post-PKS modification enzymes resulted in the production of a series of new TXN analogues, intermediates, and shunt products, most of which show high anti-cancer activity. Structural elucidation of these new compounds not only helps us to propose the biosynthetic pathway, featuring a type II PKS using a novel starter unit, but also set the stage for further characterization of the enzymatic reactions and combinatorial biosynthesis.  相似文献   

5.
In vitro experiments with modular polyketide synthases (PKSs) are often limited by the availability of polyketide extender units. To determine the polyketide extender units that can be biocatalytically accessed via promiscuous malonyl-CoA ligases, structural and functional studies were conducted on Streptomyces coelicolor MatB. We demonstrate that this adenylate-forming enzyme is capable of producing most CoA-linked polyketide extender units as well as pantetheine- and N-acetylcysteamine-linked analogs useful for in?vitro PKS studies. Two ternary product complex structures, one containing malonyl-CoA and AMP and the other containing (2R)-methylmalonyl-CoA and AMP, were solved to 1.45?? and 1.43?? resolution, respectively. MatB crystallized in the thioester-forming conformation, making extensive interactions with the bound extender unit products. This first structural characterization of an adenylate-forming enzyme that activates diacids reveals the molecular details for how malonate and its derivatives are accepted. The orientation of the α-methyl group of bound (2R)-methylmalonyl-CoA, indicates that it is necessary to epimerize α-substituted extender units formed by MatB before they can be accepted by PKS acyltransferase domains. We demonstrate the in?vitro incorporation of methylmalonyl groups ligated by MatB to CoA, pantetheine, or N-acetylcysteamine into a triketide pyrone by the terminal module of the 6-deoxyerythronolide B synthase. Additionally, a means for quantitatively monitoring certain in?vitro PKS reactions using MatB is presented.  相似文献   

6.
Polyketide natural products generated by type I modular polyketide synthases (PKSs) are vital components in our drug repertoire. To reprogram these biosynthetic assembly lines, we must first understand the steps that occur within the modular "black boxes." Herein, key steps of acyl-CoA extender unit selection are explored by in?vitro biochemical analysis of the PikAIV PKS model system. Two complementary approaches are employed: a fluorescent-probe assay for steady-state kinetic analysis, and Fourier Transform Ion Cyclotron Resonance-mass spectrometry (FTICR-MS) to monitor active-site occupancy. Findings from five enzyme variants and four model substrates have enabled a model to be proposed involving catalysis based upon acyl-CoA substrate loading followed by differential rates of hydrolysis. These efforts suggest a strategy for future pathway engineering efforts using unnatural extender units with slow rates of hydrolytic off-loading from the acyltransferase domain.  相似文献   

7.
Flavoprotein monooxygenases (FPMOs) play important roles in generating structural complexity and diversity in natural products biosynthesized by type II polyketide synthases (PKSs). In this study, we used genome mining to discover novel mutaxanthene analogues and investigated the biosynthesis of these aromatic polyketides and their unusual xanthene framework. We determined the complete biosynthetic pathway of mutaxathene through in vivo gene deletion and in vitro biochemical experiments. We show that a multifunctional FPMO, MtxO4, catalyzes ring rearrangement and generates the required xanthene ring through a multistep transformation. In addition, we successfully obtained all necessary enzymes for in vitro reconstitution and completed the total biosynthesis of mutaxanthene in a stepwise manner. Our results revealed the formation of a rare xanthene ring in type II polyketide biosynthesis, and demonstrate the potential of using total biosynthesis for the discovery of natural products synthesized by type II PKSs.  相似文献   

8.
Polyketide synthases (PKSs) catalyze the production of numerous biologically important natural products via repeated decarboxylative condensation reactions. Modular PKSs, such as the 6-deoxyerythronolide B synthase (DEBS), consist of multiple catalytic modules, each containing a unique set of covalently linked catalytic domains. To better understand the engineering opportunities of these assembly lines, the extender unit and acyl carrier protein (ACP) specificity of keto synthase (KS) domains from modules 3 and 6 of DEBS were analyzed. These studies were undertaken with a newly developed didomain [KS][AT] construct, which lacks its own ACP domain and can therefore be interrogated with homologous or heterologous ACP or acyl-ACP substrates. By substituting the natural methylmalonyl extender unit with a malonyl group, a modest role was demonstrated for the KS in recognition of the nucleophilic substrate. The KS domain from module 3 of DEBS was found to exhibit a distinct ACP-recognition profile from the KS domain of module 6. On the basis of the above kinetic insights, a hybrid module was constructed ([KS3][AT3][KR5][ACP5][TE]) which displayed substrate recognition and elongation capabilities consistent with the natural module 3 protein. Unlike module 3, however, which lacks a ketoreductase (KR) domain, the hybrid module was able to catalyze reduction of the beta-ketothioester product of chain elongation. The high expression level and functionality of this hybrid protein demonstrates the usefulness of kinetic analysis for hybrid module design.  相似文献   

9.
In the biosynthesis of complex polyketides, acyltransferase domains (ATs) are key determinants of structural diversity. Their specificity and position in polyketide synthases (PKSs) usually controls the location and structure of building blocks in polyketides. Many bioactive polyketides, however, are generated by trans-AT PKSs lacking internal AT domains. They were previously believed to use mainly malonyl-specific free-standing ATs. Here, we report a mechanism of structural diversification, in which the trans-AT KirCII regiospecifically incorporates the unusual extender unit ethylmalonyl-CoA in kirromycin polyketide biosynthesis.  相似文献   

10.
BACKGROUND: Polycyclic aromatic polyketides, such as the tetracyclines and anthracyclines, are synthesized by bacterial aromatic polyketide synthases (PKSs). Such PKSs contain a single set of iteratively used individual proteins for the construction of a highly labile poly-beta-carbonyl intermediate that is cyclized by associated enzymes to the core aromatic polyketide. A unique polyketide biosynthetic pathway recently identified in the marine strain 'Streptomyces maritimus' deviates from the normal aromatic PKS model in the generation of a diverse series of chiral, non-aromatic polyketides. RESULTS: A 21.3 kb gene cluster encoding the biosynthesis of the enterocin and wailupemycin family of polyketides from 'S. maritimus' has been cloned and sequenced. The biosynthesis of these structurally diverse polyketides is encoded on a 20 open reading frames gene set containing a centrally located aromatic PKS. The architecture of this novel type II gene set differs from all other aromatic PKS clusters by the absence of cyclase and aromatase encoding genes and the presence of genes encoding the biosynthesis and attachment of the unique benzoyl-CoA starter unit. In addition to the previously reported heterologous expression of the gene set, in vitro and in vivo expression studies with the cytochrome P-450 EncR and the ketoreductase EncD, respectively, support the involvement of the cloned genes in enterocin biosynthesis. CONCLUSIONS: The enterocin biosynthesis gene cluster represents the most versatile type II PKS system investigated to date. A large series of divergent metabolites are naturally generated from the single biochemical pathway, which has several metabolic options for creating structural diversity. The absence of cyclase and aromatase gene products and the involvement of an oxygenase-catalyzed Favorskii-like rearrangement provide insight into the observed spontaneity of this pathway. This system provides the foundation for engineering hybrid expression sets in the generation of structurally novel compounds for use in drug discovery.  相似文献   

11.
Reported is the structure and biosynthesis of ansalactam A, an ansamycin class polyketide produced by an unusual modification of the polyketide pathway. This new metabolite, produced by a marine sediment-derived bacterium of the genus Streptomyces , possesses a novel spiro γ-lactam moiety and a distinctive isobutyryl polyketide fragment observed for the first time in this class of natural products. The structure of ansalactam A was defined by spectroscopic methods including X-ray crystallographic analysis. Biosynthetic studies with stable isotopes further led to the discovery of a new, branched chain polyketide synthase extender unit derived from (E)-4-methyl-2-pentenoic acid for polyketide assembly observed for the first time in this class of natural products.  相似文献   

12.
Yi Tang 《Tetrahedron》2004,60(35):7659-7671
Polycyclic aromatic polyketides such as actinorhodin and tetracenomycin are synthesized from acetate equivalents by type II polyketide synthases (PKS). Their carbon chain backbones are derived from malonyl-CoA building blocks through the action of a minimal PKS module consisting of a ketosynthase, a chain length factor, an acyl carrier protein (ACP) and a malonyl-CoA/ACP transacylase. In contrast to these acetogenic polyketides, the backbones of a few aromatic polyketide natural products, such as the R1128 antibiotics, are primed by non-acetate building blocks. These polyketides are synthesized by bimodular PKSs comprising of a dedicated initiation module, which includes a ketosynthase, acyl transferase and ACP, as well as a minimal PKS module. Recently we showed that regioselectively modified polyketides could be synthesized through the genetic recombination of initiation modules and minimal PKS modules from different polyketide biosynthetic pathways (Tang et al. PLoS Biol. 2004, 2, 227-238). For example, the actinorhodin and tetracenomycin minimal PKSs could accept and elongate unnatural primer units from the R1128 initiation module. In this report we provide further examples of using heterologous bimodular PKSs for the engineered biosynthesis of new aromatic polyketides. In addition to providing insights into the biosynthetic mechanisms of aromatic PKSs, our findings also highlight considerable potential for crosstalk between amino acid catabolism and aromatic polyketide biosynthesis. For example, exogenously supplied unnatural amino acids are efficiently incorporated into bioactive anthraquinone antibiotics.  相似文献   

13.
The study of bioactive natural products has undergone rapid advancement with the cloning and sequencing of large number of gene clusters and the concurrent progress to manipulate complex biosynthetic systems in heterologous hosts. The genetic reconstitution necessitates that the heterologous hosts possess substrate pools that could be coordinately supplied for biosynthesis. Polyketide synthases (PKS) utilize acyl-coenzyme A (CoA) precursors and synthesize polyketides by repetitive decarboxylative condensations. Here we show that acyl-CoA ligases, which belong to a large family of acyl-activating enzymes, possess potential to produce varied starter CoA precursors that could be utilized in polyketide biosynthesis. Incidentally, such protein domains have been recognized in several PKS and nonribosomal peptide synthetase gene clusters. Our studies with mycobacterial fatty acyl-CoA ligases (FACLs) show remarkable tolerance to activate a variety of fatty acids that contain modifications at alpha, beta, omega, and omega-nu positions. This substrate flexibility extends further such that these proteins also efficiently utilize N-acetyl cysteamine, the shorter acceptor terminal portion of CoASH, to produce acyl-SNACs. We show that the in situ generated acyl-CoAs and acyl-SNACs could be channeled to types I and -III PKS systems to produce new metabolites. Together, the promiscuous activity of FACL and PKSs provides new opportunities to expand the repertoire of natural products.  相似文献   

14.
Streptomyces diastaticus var. 108, a newly isolated strain, produces two closely related tetraene macrolides (rimocidin and CE-108) as well as oxytetracycline. A region of 19,065 base pairs of DNA from the S. diastaticus var. 108 genome was isolated, sequenced, and characterized. Ten complete genes and one truncated ORF were located. Disruption of these genes proved that this genomic region is part of the biosynthetic cluster for the two tetraenes. The choice of starter units by the loading module and the in vivo availability of the starter metabolites are crucial for the final ratio of the two macrolides. A second type I PKS, unrelated to tetraene biosynthesis, was also identified; disruption of these genes suggests that they would code for enzymes involved in the biosynthesis of a polyketide that might compete metabolically with rimocidin production.  相似文献   

15.
BACKGROUND: Polyketide synthases (PKSs) generate molecular diversity by utilizing different starter molecules and by controlling the final length of the polyketide. Although exploitation of this mechanistic variability has produced novel polyketides, the structural foundation of this versatility is unclear. Plant-specific PKSs are essential for the biosynthesis of anti-microbial phytoalexins, anthocyanin floral pigments, and inducers of Rhizobium nodulation genes. 2-Pyrone synthase (2-PS) and chalcone synthase (CHS) are plant-specific PKSs that share 74% amino acid sequence identity. 2-PS forms the triketide methylpyrone from an acetyl-CoA starter molecule and two malonyl-CoAs. CHS uses a p-coumaroyl-CoA starter molecule and three malonyl-CoAs to produce the tetraketide chalcone. Our goal was to elucidate the molecular basis of starter molecule selectivity and control of polyketide length in this class of PKS.Results: The 2.05 A resolution crystal structure of 2-PS complexed with the reaction intermediate acetoacetyl-CoA was determined by molecular replacement. 2-PS and CHS share a common three-dimensional fold, a set of conserved catalytic residues, and similar CoA binding sites. However, the active site cavity of 2-PS is smaller than the cavity in CHS. Of the 28 residues lining the 2-PS initiation/elongation cavity, four positions vary in CHS. Point mutations at three of these positions in CHS (T197L, G256L, and S338I) altered product formation. Combining these mutations in a CHS triple mutant (T197L/G256L/S338I) yielded an enzyme that was functionally identical to 2-PS.Conclusions: Structural and functional characterization of 2-PS together with generation of a CHS mutant with an initiation/elongation cavity analogous to 2-PS demonstrates that cavity volume influences the choice of starter molecule and controls the final length of the polyketide. These results provide a structural basis for control of polyketide length in other PKSs, and suggest strategies for further increasing the scope of polyketide biosynthetic diversity.  相似文献   

16.
The gem‐dimethyl groups in polyketide‐derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem‐dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem‐dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem‐dimethyl group producing PKS modules. Experiments showed that both PKSs are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module 8, use of dimethylmalonyl‐ACP appeared to be the sole route to form a gem‐dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation.  相似文献   

17.
Thiolactomycin (TLM), a natural product produced by both Nocardia and Streptomyces spp., is a potent and highly selective inhibitor of the type II dissociated fatty acid synthases of plants and bacteria. The unique mode of action of TLM and its low toxicity make it an attractive compound for development of new antimicrobial agents. In this study, incorporation studies with 13C-labeled precursors demonstrate that TLM is derived from one acetate-derived starter unit and three methylmalonate-derived extender units. The unusual thiolactone represented by TLM represents a novel class of polyketide-derived antibiotics in which an unusual cyclization process, which terminates the biosynthetic pathway, involves incorporation of a sulfur atom from l-cysteine. Manipulation of this pathway through techniques such a combinatorial biosynthesis and mutasynthesis may provide a new route for economically viable production of useful TLM analogues.  相似文献   

18.
《Chemistry & biology》1997,4(6):433-443
Background: Iterative type II polyketide synthases (PKSs) produce polyketide chains of variable but defined length from a specific starter unit and a number of extender units. They also specify the initial regiospecific folding and cyclization pattern of nascent polyketides either through the action of a cyclase (CYC) subunit or through the combined action of site-specific ketoreductase (KR) CYC CYC subunits. Additional CYCs and other modifications may be necessary to produce linear aromatic polyketides. The principles of the assembly of the linear aromatic polyketides, several of which are medically important, are well understood, but it is not clear whether the assembly of the angular aromatic (angucyclic) polyketides follows the same rules.Results: We performed an in vivo evaluation of the subunits of the PKS responsible for the production of the angucyclic polyketide jadomycin (jad), in comparison with their counterparts from the daunorubicin (dps) and tetracenomycin (tcm) PKSs which produce linear aromatic polyketides. No matter which minimal PKS was used to produce the initial polyketide chain, the JadD and DpsF CYCs produced the same two polyketides, in the same ratio; neither product was angularly fused. The set of jadABCED PKS plus putative jadl CYC genes behaved similarly. Furthermore, no angular polyketides were isolated when the entire set of jad PKS enzymes and Jadl or the jad minimal PKS, Jadl and the TcmN CYC were present. The DpsE KR was able to reduce decaketides but not octaketides; in contrast, the KRs from the jad PKS (JadE) or the actinorhodin PKS (ActIII) could reduce octaketide chains, giving three distinct products.Conclusions: It appears that the biosynthesis of angucyclic polyketides cannot be simply accomplished by expressing the known PKS subunits from artificial gene cassettes under the control of a non-native promoter. The characteristic structure of the angucycline ring system may arise from a kinked precursor during later cyclization reactions involving additional, but so far unknown, components of the extended decaketide PKS. Our results also suggest that some KRs have a minimal chain length requirement and that CYC enzymes may act aberrantly as first-ring aromatases that are unable to perform all of the sequential cyclization steps. Both of these characteristics may limit the widespread application of CYC or KR enzymes in the synthesis of novel polyketides.  相似文献   

19.
Mutasynthesis of enterocin and wailupemycin analogues   总被引:2,自引:0,他引:2  
Inactivation of the novel phenylalanine ammonia lyase gene encP, whose product is a key component in the biosynthetic pathway to benzoyl-coenzyme A (CoA) in the bacterium Streptomyces maritimus, resulted in the loss of production of the benzoate-primed polyketides enterocin and wailupemycin G. A series of cinnamate and benzoate derivatives were administered to the DeltaencP mutant, resulting in the formation of novel analogues bearing p-fluorobenzoate, 2- and 3-thiophenecarboxylate, and cyclohex-1-enecarboxylate residues. Given that the benzoate:CoA ligase EncN was evaluated to have broad in vitro substrate specificity towards aryl acids, the strict starter unit specificity observed in vivo indicates that the enterocin type II polyketide synthase (PKS) exerts selective control over the choice of starter units. This study represents the first mutasynthesis experiments with iterative type II PKSs.  相似文献   

20.
Polyketide synthases (PKSs) usually employ a ketoreductase (KR) to catalyze the reduction of a β‐keto group, followed by a dehydratase (DH) that drives the dehydration to form a double bond between the α‐ and β‐carbon atoms. Herein, a DH*‐KR* involved in FR901464 biosynthesis was characterized: DH* acts on glyceryl‐S‐acyl carrier protein (ACP) to yield ACP‐linked pyruvate; subsequently KR* reduces α‐ketone that yields L ‐lactyl‐S‐ACP as starter unit for polyketide biosynthesis. Genetic and biochemical evidence was found to support a similar pathway that is involved in the biosynthesis of lankacidins. These results not only identified new PKS domains acting on different substrates, but also provided additional options for engineering the PKS starter pathway or biocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号