首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
采用基于密度泛函理论的第一性原理方法,研究了Mg-Al-Ca合金中AB2型二元Laves相(如CaMg2, CaAl2 和MgAl2 )在不同形态结构(C14, C15和C36)下的晶体结构、电子结构和力学性能。计算所得的晶格常数与实验数据吻合很好。形成能与相关能的计算表明C15- CaAl2 Laves相具有很好的合金化能力和结构稳定性。态密度和电荷密度的计算从微观上进一步分析了C15-CaAl2具有很好的合金化能力和稳定性的根源。弹性常数的计算和力学性能的分析表明C14-MgAl2具有很好的延展性,C15-MgAl2具有很好的塑性。  相似文献   

2.
采用基于密度泛函理论的第一性原理方法,研究了Mg-Al-Ca合金中AB2型二元Laves相(如CaMg2, CaAl2 和MgAl2 )在不同形态结构(C14, C15和C36)下的晶体结构、电子结构和力学性能。计算所得的晶格常数与实验数据吻合很好。形成能与相关能的计算表明C15- CaAl2 Laves相具有很好的合金化能力和结构稳定性。态密度和电荷密度的计算从微观上进一步分析了C15-CaAl2具有很好的合金化能力和稳定性的根源。弹性常数的计算和力学性能的分析表明C14-MgAl2具有很好的延展性,C15-MgAl2具有很好的塑性。  相似文献   

3.
采用基于密度泛函理论的第一性原理方法,应用VASP (Vienna Ab-initio Simulation Package) 计算软件,研究了Mg-Al-Ca合金中三元Laves相,即Ca(Mg1-x,Alx)2和Al2(Ca1-x,Mgx) (x=0, 0.25, 0.50, 0.75, 1)在不同形态结构(C14, C15和C36)下的相稳定性及电子结构。计算所得的晶格常数和实验值吻合很好,形成能和相关能的计算用来研究三元Laves相的合金化能力和稳定性,结果表明:C14-Ca(Mg0.25,Al0.75)2具有很好的合金化能力,而C15- CaAl2具有很好的结构稳定性。态密度和电荷密度的计算用来研究Mg-Al-Ca合金中三元Laves相稳定性的内在微观机制。  相似文献   

4.
Gold nanoclusters of a size approaching the molecular limit (<3 nm) were prepared on Si substrates in order to study alloy formation on the nanometer scale. For this purpose, indium atoms are deposited on top of the gold particles at room temperature and the formation of AuIn(2) is studied by x-ray photoelectron spectroscopy in situ. It is observed that the alloy formation takes place independent of whether the particles electronically are in an insulating molecular or in a metallic state. Most important, however, closed packed full-shell clusters containing 55 Au atoms are found to exhibit an outstanding stability against alloying despite a large negative heat of formation of the bulk Au-In system. Thus, Au(55) clusters may play a significant role in the design of nanoscaled devices where chemical inertness is of crucial importance.  相似文献   

5.
By using first principles calculations, it is found that the noble metal atoms Ag, Au and Cu would like to occupy the vacancy sites of the W(0 0 1) or Mo(0 0 1) surface to form the substitutional surface alloys, despite the fact that they do not like to form alloy in the bulk. The electronic local function (ELF) for these substitutional surface alloys shows that there is no obvious chemical bonding between the noble metals and W or Mo. The analysis of electronic structures lets us conclude that the surface alloying of immiscible metals may originate from the surface state shift of W (or Mo) induced by changes of the electronic environment of surface W (or Mo) when surface W (or Mo) atoms are alternatively replaced by Ag (Au or Cu).  相似文献   

6.
We report the unusual glass-forming ability (GFA) of a family of Cu-based alloys, Cu46Zr47-xAl7Yx (0相似文献   

7.
A binary alloy Schottky barrier diode on zinc oxide (ZnO) was developed using the combinatorial ion beam-assisted deposition system. The compositional fraction of the binary alloy was continuously varied using the composition-spread technique, to control the Schottky barrier height. After metal deposition, patterned Schottky diodes were fabricated on a ZnO single-crystal substrate. Pt-Ru alloy was selected from the work function viewpoint. Our experiments showed that the compositional fraction of the Schottky binary alloys changed continuously as designed and the Schottky barrier heights measured by current-voltage (I-V) measurements increased with increasing Pt content. Maximum barrier height difference for ZnO was 137 meV. Using ion beam deposition in parallel with the combinatorial system showed that the Schottky barrier heights for ZnO can be controlled by binary metal alloying.  相似文献   

8.
Using scanning tunneling microscopy (STM) and first-principles local-spin-density-approximation calculations to study submonolayer films of Co (1-c)Ag (c)/Ru(0001) alloys, we have discovered a novel phase-separation mechanism. When the Ag concentration c exceeds 0.4, the surface phase separates between a dislocated, pure Ag phase and a pseudomorphically strained Co(0.6)Ag (0.4) surface alloy. We attribute the phase separation to the competition between two stress relief mechanisms: surface alloying and dislocation formation. The agreement between STM measurements and our calculated phase diagram supports this interpretation.  相似文献   

9.
The effect of Zr (up to 1 at.%) addition on the formation of Fe–Zr metastable alloys and their thermal stability were investigated for their possible nuclear applications. Fe–xZr (x = 0.25, 0.5, 1%) alloys were synthesised by mechanical alloying under a high-purity argon atmosphere using stainless steel grinding media in a SPEX 8000M high energy mill. The milling was conducted for 20 h with a ball-to-powder weight ratio of 10:1. The formation of metastable solid solutions after milling was confirmed from the change in the Gibbs free energy analysis as per Miedema’s model. The microstructural characterisation was carried out by analysis of X-ray diffraction, atomic force microscopy and transmission electron microscopy. The effect of Zr on the thermal stability of Fe–Zr alloys was investigated by extensive annealing experiments followed by microstructural analysis and microhardness measurements. The stabilisation was found to occur at 800 °C and thereafter, no significant change in the crystallite size was observed for the samples annealed between 800 and 1200 °C. The supersaturated solid solution, especially 1% Zr alloy, found to be highly stable up to 800 °C and the microhardness value of the same measured to be as high as 8.8 GPa corresponding to a crystallite size of 57 nm. The stabilisation effect has been discussed in the light of both the thermodynamic and kinetic mechanisms and the grain size stabilisation is attributed to the grain boundary segregation of Zr atoms and/or Zener pinning by nanoscale precipitation of the Fe2Zr phase.  相似文献   

10.
The interplay of several events, ranging from production, migration and interaction of defects, to irradiation enhanced atomic diffusion and chemical mixing, is responsible for phase formation in surface layers of ion bombarded metallic alloys. The problem is so complicated that even the interpretation and the prediction of extreme cases such as the attainment of a crystalline, or a glassy product are presently beyond the possibilities of first principle approaches, and empirical criteria have been proposed to this end. In this work we limit ourselves to the very beginning of phase formation, i.e. thenucleation stage, in the frame of an atomistic model. In a binary alloy, after formation of collision cascades, the relaxation to metastable equilibrium of the locally altered compositional profile due to preferential migration to the cascade-matrix interface of one alloy component, is schematized by charge transfer events As a result, dimers of an effective alloy are formed. Conditions specific of glass and respectively crystal formation are extracted from an analysis of surface and thermochemical properties of starting and effective alloys.  相似文献   

11.
We report on a detailed investigation of the phase equilibria and the Fermi surface in the Al-Zn system. Our calculation are based on the density functional theory and we use the linear muffin-tin orbital method and the Green's function technique. The calculated free energies of alloy formation exhibit the existence of a miscibility gap between the alloys containing approximately 10 and 55 at.% of Zn, in agreement with the phase diagram of the Al-Zn system. Seven electronic topological transitions (ETT) were found in Al-Zn system within the stability range of the fcc solid solution. A relation between these ETT and the phase stability of the fcc Al-Zn solid solutions is established. We show that extremum points on the concentration dependencies of the thermodynamic properties of Al-Zn alloys can be explained by band-filling effects. Received 6 February 2002 Published online 19 November 2002  相似文献   

12.
满田囡  张林  项兆龙  王文斌  高建文  王恩刚 《物理学报》2018,67(3):36101-036101
难混溶合金在凝固过程中极易发生液-液相分离,造成第二相的宏观偏析,失去了合金的应用价值.本文将第三组元Ti添加到Al-Bi难混溶合金中,研究了Ti的添加对合金的凝固组织和性能的影响,探索了原位生成的金属间化合物的存在形式,分析了第二相Bi颗粒的分布.研究结果表明,凝固过程中原位生成的长针状Al_3Ti化合物,均匀分布在Al基体中,穿插在Bi相颗粒之间,阻碍了Bi相颗粒的沉降及凝并,防止了Bi相颗粒的碰撞及长大,制备了Bi相弥散分布在Al基体中的难混溶合金;同时弥散分布在基体中的硬质相Al_3Ti还增强了基体的强度,提高了合金的硬度,使合金表现出优异的耐磨性能.  相似文献   

13.
The regularities of the formation of a heterophase structure and mechanical properties of V–4Ti–4Cr alloy as a function of thermomechanical and chemical heat treatments are studied. The regimes of thermomechanical treatment which provide the formation of a heterophase structure with a homogeneous volume distribution of oxycarbonitride nanoparticles with a size of about 10 nm and an increase in the volume content and thermal stability of this phase and which provide an increase in the temperature of alloy recrystallization are developed. The formation of the heterophase structure results in a substantial (up to 70%) increase in the short-term high-temperature strength of the alloy at T = 800°C. The increase in the strength is achieved while keeping a rather high level of plasticity.  相似文献   

14.
李蕊轩  张勇 《物理学报》2017,66(17):177101-177101
熵作为系统的状态函数,对于真实物质体系而言是一个极为重要的物理量.在非晶态合金的制备过程中最具代表性的指导原则有"混乱原理"和井上三原则,二者皆与熵有着紧密的联系.在过去很长一段时间内,这些经验准则指导了大量新型非晶体系的发现,但近些年的实验结果对这些理论提出了质疑.除组元数目之外,还有其他尚待研究的因素也影响着合金体系的玻璃形成能力.本文总结了玻璃转变过程中熵在热力学条件、动力学条件和结构条件中所扮演的角色,阐述了其对玻璃形成能力产生的或正或反的影响.特别是对近几年发展起来的高熵非晶体系的研究有助于开发出临界尺寸更大的非晶合金,也有助于进一步探索多组元合金和非晶形成能力之间的关系.  相似文献   

15.
An amorphous phase containing traces of non-transformed Co and Ti powders was obtained by mechanical alloying nominal compositions of Co67Ti33 and Co50Ti50 in a high-energy ball-mill. These alloys were prepared from elemental powders of Co and Ti. The heat treatment of Co67Ti33 at 573, 873 and 1173 K crystallized nanoparticles of Co2Ti and Co3Ti compounds, while the same treatments conducted on Co50Ti50 resulted in the formation of Co2Ti and CoTi nanoparticles. The saturation magnetizations reached a maximum value in the amorphous state and they decreased when the temperatures of the heat treatment rose. Demagnetizing interparticle interaction effects were estimated through hysteresis loops and initial magnetization curves using the Fourier technique.  相似文献   

16.
A series of Ti-Zr-Be-Fe bulk metallic glasses(BMGs)with good glass-forming ability(GFA)and high specific strength have been developed.With different alloying routes and content of Fe,it is found that these alloys exhibit different GFA and mechanical properties.The effects of Fe addition on the GFA and mechanical properties of Ti-Zr-Be alloy are systemically investigated.The possible mechanisms for the improvement or damage to the GFA by addition of Fe can be interpreted in view of the mixing enthalpy,atomic size differences and electronegativity differences of the alloys,while the mechanical properties strongly depend on the Poisson’s ratio and free volume concentration.The experimental results also show that alloying technology is an effective method to improve the GFA and mechanical properties of Ti-Zr-Be glassy alloy.  相似文献   

17.
Radiography, differential scanning calorimetry, luminescence and high-resolution electron microscopy are used to study the production, nanocrystalline structure, stability, and microhardness of alloys from the Ni-Mo-B system containing from 27 at. % to 31.5 at. % Mo and 10 at. % B. All studies of these alloys indicated that annealing at 600 °C leads to the creation of a granular phase consisting of FCC nanocrystallites with average grain sizes of 15–25 nm, depending on the chemical composition of the alloy. Annealing these nanocrystalline samples isothermally at a temperature of 600 °C has no appreciable effect on the grain size. Structurally, the nanocrystalline phase consists of grains of an FCC solid solution of Mo and B in Ni, dispersed in an amorphous matrix that isolates them from one another. The lattice parameters of the FCC nanocrystallites depend on the alloy composition and the duration of their isothermal anneal. Within this latter time, molybdenum and boron atoms diffuse from the FCC solid-solution lattice into the surrounding amorphous matrix. The stability of the nanocrystalline structure is determined by the thermal stability of the amorphous matrix, whose crystallization temperature increases with the isothermal annealing time due to enrichment by boron and molybdenum. As the structure forms, the alloy becomes harder as the nanocrystalline grains grow in size. This relation between hardness and grain size, which is opposite to the Hall-Petch law, is explained by hardening of the amorphous matrix due to changes in its chemical composition. Fiz. Tverd. Tela (St. Petersburg) 40, 10–16 (January 1998)  相似文献   

18.
This study investigates flow boiling heat transfer of aqueous alumina nanofluids in single microchannels with particular focuses on the critical heat flux (CHF) and the potential dual roles played by nanoparticles, i.e., (i) modification of the heating surface through particle deposition and (ii) modification of bubble dynamics through particles suspended in the liquid phase. Low concentrations of nanofluids (0.001–0.1 vol.%) are formulated by the two-step method and the average alumina particle size is ~25 nm. Two sets of experiments are performed: (a) flow boiling of formed nanofluids in single microchannels where the effect of heating surface modification by nanoparticle deposition is apparent and (b) bubble formation in a quiescent pool of alumina nanofluids under adiabatic conditions where the role of suspended nanoparticles in the liquid phase is revealed. The flow boiling experiments reveal a modest increase in CHF by nanofluids, being higher at higher nanoparticle concentrations and higher inlet subcoolings. The bubble formation experiments show that suspended nanoparticles in the liquid phase alone can significantly affect bubble dynamics. Further discussion reveals that both roles are likely co-existent in a typical boiling system. Properly surface-promoted nanoparticles could minimize particle deposition hence little modification of the heating surface, but could still contribute to the modification in heat transfer through the second mechanism, which is potentially promising for microchannel applications.  相似文献   

19.
周正存  杜洁  朱晓斌  严勇健  王幸福 《物理学报》2019,68(8):86201-086201
用粉末冶金方法制备了不同Nb含量的Ti-Nb合金.用美国TA仪器公司的动力学分析仪Q800以单臂振动模式研究了不同Nb含量和不同热处理以及不同测量参数下的Ti-Nb合金的内耗行为,用X-射线衍射检测了不同样品的微观结构.实验表明,在水淬的和烧结态的Ti-Nb合金的内耗-温度曲线上均发现了弛豫型的内耗峰,这个内耗峰的高度与Nb含量有关,在低Nb含量的Ti-Nb合金样品中不出现,水淬样品内耗峰的最大值出现在Ti-35.4 wt.%Nb (以下称Ti-35.4Nb)的合金中,烧结态样品的内耗峰高度在实验成分范围内单调地随Nb含量而增加.水淬的Ti-35.4Nb合金的弛豫参数分别是激活能H_(wq)=(1.67±0.1) eV和指数前因子τ_(0wq)=1.1×10~(-17±1) s.另外,内耗峰的高度也与热处理有关,水淬的Ti-35.4Nb合金比具有相同成分的烧结态的合金的内耗峰高得多,淬火温度对内耗峰高度也有影响.研究发现,这个内耗峰与Ti-Nb合金中的β相有关,峰高取决于β相的稳定性及其含量,当β相的稳定性降低以及β相的量增加时,峰高增加.水淬Ti-35.4Nb合金中的β相是亚稳状态的β相(β_M),时效时β_M能转变成稳定的α相和稳定β相(β_S),烧结态合金中的β相是β_S.不同热处理状态下Ti-35.4Nb合金样品的微观结构的不同导致了内耗峰高度的差别.从微观结构分析,在淬火的合金中,峰高最大值出现在35 wt.%Nb含量附近的现象是由β相的稳定性和β_M相的量随Nb含量变化引起的.在烧结态的Ti-Nb合金中,峰高单调地随Nb含量的增加而增加的情况是由β_S的量决定的.在循环应力作用下,β_M或β_S相晶格点阵中氧原子的跳动和氧原子与替代原子的相互作用是产生内耗峰的根源.  相似文献   

20.
使用第一性原理赝势方法及量子化学从头算方法计算的物理量以及最小二乘法拟合的数据构建了多元合金Fe-Cr-V-Ni-Si-C系的原子间互作用势,并利用该原子间互作用势计算了实验合金N5(Fe9.07Cr7.56V0.8Ni0.49 Mo0.96Mn1.52Si3.3C),N6(Fe9.65Cr7.72V1.17Ni0.50Mo0.91Mn1.42Si3.3C),N7(Fe9.81Cr7.65V1.58Ni0.46Mo0.86Mn1.35Si3.3C),N8(Fe10.05Cr7.59V2.24Ni0.40M 关键词: F-S多体势 多元合金 第一性原理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号