首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
This paper investigates the absorptive reduction and the width narrowing of electromagnetically induced transparency (EIT) in a thin vapour film of A-type atoms confined between two dielectric walls whose thickness is comparable with the wavelength of the probe field. The absorptive lines of the weak probe field exhibit strong reductions and very narrow EIT dips, which mainly results from the velocity slow-down effects and transient behaviour of atoms in a confined system. It is also shown that the lines are modified by the strength of the coupling field and the ratio of L/λ, with L the film thickness and λthe wavelength of the probe field. A simple robust recipe for EIT in a thin medium is achievable in experiment.  相似文献   

2.
Information of molecular orientation in nematic liquid crystal (LC) is attractive and important for applications in the field of display devices. We demonstrate a novel method using a birefringence scanning near-field optical microscope (Bi-SNOM) with a probe which is inserted into the LC thin film to detect the molecular orientation from its birefringence responses in the thickness direction of the LC thin film. The probe is laterally vibrated when going forward into the LC thin film, and the retardation and azimuth angle are recorded as the probe going down. Firstly, the thickness of the LC thin film is measured by the shear force detection. Since the shear force acts as a stimulation to reorientate the LC molecules above the substrate surface, we can detect the molecular orientation caused by a polyimide alignment substrate and the effect to molecular orientation caused by vibration of fibre probe. As a result, the orientation profiling of the LC film in depth direction is obtained in both the cases that the direction of probe vibrating is vertical/parallel to the rubbing direction of the alignment film. Furthermore, the thickness of completely orientated layers just above the substrate surface can also be obtained by either vibrating probe or no-vibrating probe. Ultimately, the LC thin film can be modelled in thickness direction from all the results using this method.  相似文献   

3.
《物理学报》1999,48(7):10
The spatial distribution of the ECR plasma density has been measured by using an eccentric Langmuir probe.The result indicates that the plasma density is very uniform in the axis Z=50cm and radial =12cm.Effect of the radial uniformity of plasma density on the uniformity of deposition rate and thin film thickness is analyzed.The repeatability to prepare silicon nitride thin film of a specified thickness is discussed.The relation of the deposition process with the deposition rate of silicon nitride thin film is investigated and the dependence of the practical application on process parameters has been obtained for the deposition thin film with ECR-PECVD technology.  相似文献   

4.
As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.  相似文献   

5.
This work presents the study of optical constants and film thickness of blended organic thin films, emphasizing on the modeling procedure with modified genetic algorithm aided by absorption or transmittance spectra of both pure materials and the blends. Taking the blending of copper phthalocyanine(Cu Pc) and fullerene(C60) as an example, a simple, convenient and low-cost method for the determination of the optical constants and film thickness of blended organic thin films was demonstrated. New scheme for optical modeling of blended organic thin film was proposed by introducing peak energies of Cody-Lorentz oscillators of the pure materials, which were determined by fitting the film absorption of pure materials. These oscillators of pure materials could be recognized in the transmittance spectrum of their blends, and were further used as the initial searching ranges in the simulation of blended films. As a result, the constraint bounds of the unknown parameters were significantly reduced and modeling efficiency as well as fitting accuracy was improved. For instance, the fitting of the transmittance curves of blended films with different blending ratios reached reliable results in comparison with extinction coefficients obtained from experiment.  相似文献   

6.
<正>This paper reports that GaSb thin films have been co-deposited on soda-lime glass substrates.The GaSb thin film structural properties are characterized by Raman spectroscopy.The Sb-A1g/GaSb-TO ratio decreases rapidly with the increase of substrate temperature,which suggests a small amount of crystalline Sb in the GaSb thin film and suggests that Sb atoms in the thin film decrease.In Raman spectra,the transverse optical(TO) mode intensity is stronger than that of the longitudinal optical(LO) mode,which indicates that all the samples are disordered.The LO/TO intensity ratio increases with increasing substrate temperature which suggests the improved polycrystalline quality of the GaSb thin film.A downshift of the TO and LO frequencies of the polycrystalline GaSb thin film to single crystalline bulk GaSb Raman spectra is also observed.The uniaxial stress in GaSb thin film is calculated and the value is around 1.0 GPa.The uniaxial stress decreases with increasing substrate temperature.These results suggest that a higher substrate temperature is beneficial in relaxing the stress in GaSb thin film.  相似文献   

7.
The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow- up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-~C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.  相似文献   

8.
In contrast to uncoated substrate, a nonlinear relationship of phase shift with the thicknesses of the thin film makes the calculation of wavefront aberration complicated. A program is compiled to calculate the wavefront aberration of multilayer thin film produced by thickness nonuniformity. The physical thickness and the optical phase change on reflection are considered. As an example, the wavefront aberration of the all-dielectric mirror is presented in ArF excimer lithography system with a typical thickness distribution. In addition, the wavefront errors of the thin film at wavelengths of 193 and 633 nm are compared in the one-piece and two-piece arrangements. Results show that the phase shift upon reflection of the thin film produced by thickness nonuniformity is very sensitive to the incident angle, wavelength, and polarization.  相似文献   

9.
Three Bi2Sr2Co2Oy thin films with different microstructures have been prepared by chemical solution deposition on LaAlO 3(001) through varying the annealing temperature.With the decrease in the annealing temperature,both the size and c-axis alignment degree of grains in the film decrease as well,leading to an increase in the film resistivity.In addition,the decrease in the annealing temperature also results in a slight increase in the Seebeck coefficient due to the enhanced energy filtering effect of the small-grain film.The nanostructured Bi2Sr2Co2Oy film with an average grain size of about 100 nm shows a power factor comparable to that of films with larger grains.Since the thermal conductivity of the nanostructured films can be depressed due to the enhanced phonon scattering by grain boundary,a higher figure of merit is expected in Bi2Sr2Co2Oy thin film with grains in nanometer size.  相似文献   

10.
A layer of 40nm-thick Ag-SiN film with Ag nano-particles embedded and distributed randomly in the SiN thin film were deposited by the method of radiant-frequency magnetron sputtering. Specimens orderly comprising a random Ag-SiN film and an optical phase change recording layer were exposed to a focused laser beam with wavelength of 69Ohm. It is shown that, with a random Ag-SiN layer deposited above the recording layer. Calculation by the finite difference time domain method of a 4Ohm-thick SiN film under a Gaussian beam irradiation has been carried out to simulate the near-field distribution in the film, which showed a huge local near-field intensity enhancement of about 200 times if small Ag particles with diameter of 6 nm were modelled inthe SiN film in the central region of the in cident laser spot.  相似文献   

11.
Our recent research achievements in the perpendicular magnetic anisotropy (PMA) properties of the CoFeB sand- wiched by MgO and tantalum layers are summarized. We found that the PMA behaviors of Ta/CoFeB/MgO and MgO/CoFeB/Ta thin films are different. The larger PMA in the latter film is related to the lower magnetization of CoFeB deposited on MgO. Furthermore, we have demonstrated a large anomalous Hall effect in perpendicular CoFeB thin fihn. Our results show large anomalous Hall resistivity, large longitudinal resistivity, and low switching field can be achieved, all at the same time, in the perpendicular CoFeB thin film. Anomalous Hall effect with high and linear sensitivity is also found in an MgO/CoFeBFFa thin film with a thick MgO layer, which opens a door tbr future device applications of perpendicular ferromagnetic thin films.  相似文献   

12.
Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.  相似文献   

13.
We use two parallel nano-slits in a silver film to form a surface plasmon Mach Zehnder interferometer (MZI), based on the interference of two surface plasmon waves propagating along the two surfaces of the silver film. Coating the silver film with a photoinduced birefringence polymer film, we achieve optical modulation of the MZI output by changing the refractive index of the polymer film with a pump beam. An on/off ratio 0f 2. 7 is obtained for a probe wavelength of 865 nm.  相似文献   

14.
15.
Based on the transverse Ising model and using decoupling approximation to the Fermi-type Green's function, we study the phase transition properties of the epitaxial ferroeleetric film with one substrate. A general recursive equation of the ferroelectric thin film with two n-layer materials is obtained, which enables us to study the phase transition properties for any number layers for epitaxial ferroelectric thin film. With the help of this equation, we analyze the effect of the exchange interaction and the transverse field in the phase diagram, the influence to the polarizations and Curie temperature numerically. The results show that epitaxial ferroelectric film are able to induce a strong increase or decrease of Curie temperature to different exchange interactions and transverse fields within the epitaxial film layers. The theoretical results are in reasonable accordance with experimental data of different ferroelectric thin film.  相似文献   

16.
The optical transient absorption spectra of an Ag-BaO thin film have been detected at a wavelength ranging from 400nm to 1000nm using the pump supercontinuum probe technique with a resolution of 130fs.We have observed the optical ultrafast relaxation,in which the electrons near the Fermi level of Ag nanoparticles were excited to a non-equilibrium state and then returned to an equilibrium state.The decay time was exponentially fitted and varied from 0.67ps to 4ps for different components of the supercontinuum probe.The peak of an unoccupied state for silver at level X‘4 was estimated to be 1.47eV above the Fermi level.  相似文献   

17.
We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.  相似文献   

18.
The surface morphology InGaAs layers with In composition of 0.3 on GaAs (001) substrates are simulated by the phase field method. We investigate the influence of the strain field induced by static point defects on surface morphology of the InGaAs thin film. Our simulation demonstrates that the rms roughness of the thin film surface is strongly dependent on the density and magnitude of the randomly distributed point defects. Point defects near the thin film surface can produce a relatively large change of the surface morphology. The influences of thin film thickness on the surface morphology with different defect distributions are illustrated in the simulations. Additionally, a combination of experiment and theory is used to examine the influence of the defect density and magnitude on the surface morphology and roughness.  相似文献   

19.
Z.A.Umar  R.S.Rawat  R.Ahmad  A.K.Kumar  Y.Wang  T.Hussain  Z.Chen  L.Shen  Z.Zhang 《中国物理 B》2014,23(2):25204-025204
The Al/a-C nanocomposite thin films are synthesized on Si substrates using a dense plasma focus device with alu- minum fitted anode and operating with CH4/Ar admixture. X-ray diffractometer results confirm the formation of metallic crystalline Al phases using different numbers of focus shots. Raman analyses show the formation of D and G peaks for all thin film samples, confirming the presence of a-C in the nanocomposite thin films. The formation of Al/a-C nanocomposite thin films is further confirmed using X-ray photoelectron spectroscopy analysis. The scanning electron microscope results show that the deposited thin films consist of nanoparticles and their agglomerates. The sizes of th agglomerates increase with increasing numbers of focus deposition shots. The nanoindentation results show the variations in hardness and elastic modulus values of nanocomposite thin film with increasing the number of focus shots. Maximum values of hardness and elastic modulus of the composite thin film prepared using 20 focus shots are found to be about 10.7 GPa and 189.2 GPa, respectively.  相似文献   

20.
Taking into account surface transition layers (STLs), we study the phase transformation and pyroelectric properties of ferroelectric thin films by employing the transverse Ising model (TIM) in the framework of the mean field approximation. The distribution functions representing the intra-layer and inter-layer couplings between the two nearest neighbour pseudo-spins are introduced to characterize STLs. Compared with the results obtained by the traditional treatments for the thin films using only the single surface transition layer (SSL), it is shown that the STL model reflects a more realistic and comprehensive situation of films. The effects of various parameters on the phase transformation properties have shown that STL can make the Curie temperature of the film higher or lower than that of the corresponding Sulk material, and the thickness of STL is a key factor influencing the film properties. For a film with definite thickness, there exists a critical STL thickness at which ferroelectricity will disappear when the intra-layer and inter-layer interactions are weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号