首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, structural characterisation and coordination behaviour of mono- and ditopic p-hydroquinone-based bis(pyrazol-1-yl)methane ligands is described (i.e., 2-(pz2CH)C6H3(OH)2 (2a), 2-(pz2CH)-6-(tBu)C6H2(OH)2 (2b), 2-(pz2CH)-6-(tBu)C6H2(OSiiPr3)(OH) (2c), 2,5-(pz2CH)2C6H2(OH)2 (4)). Ligands 2a, 2b and 4 can be oxidised to their p-benzoquinone state on a preparative scale (2a ox, 2b ox, 4 ox). An octahedral Ni II complex [trans-Ni(2c)2] and square-planar Pd II complexes [Pd2bCl2] and [Pd2b ox Cl2] have been prepared. In the two Pd II species, the ligands are coordinated only through their pyrazolyl rings. The fact that [Pd2bC12] and [Pd2b oxC12] are isolable compounds proves that redox transitions involving the p-quinone substituent are fully reversible. In [Pd2b oxCl2], the methine proton is highly acidic and can be abstracted with bases as weak as NEt(3). The resulting anion dimerises to give a dinuclear macrocyclic Pd II complex, which has been structurally characterised. The methylated ligand 2-(pz2CMe)C6H3O2 (11 ox) and its Pd II complex [Pd11 oxCl2] are base-stable. A new class of redox-active ligands is now available with the potential for applications both in catalysis and in materials science.  相似文献   

2.
Transition Metal Chemistry - In this work, the synthesis and characterization of seven complexes (1–7) was performed with Zn(II), Cu(II), Co(II) and Ni(II) transition metals and ligands...  相似文献   

3.
The reaction of 3(5)-methylthio-5(3)-phenylpyrazole with dibromomethane under phase-transfer catalytic conditions only affords a new ligand, bis(3-phenyl-5-methylthiopyrazol-1-yl)methane. However, the reaction of 3(5)-methylthio-5(3)-p-methoxyphenylpyrazole or 3(5)-methylthio-5(3)-tert-butylpyrazole with dibromomethane under the same conditions yields three isomers, respectively, indicating that the substituents significantly affect the steric and electronic properties of pyrazole ring during the formation of ligands. Treatment of these potential polydentate ligands with M(CO)6 (M=Cr, Mo or W) under UV irradiation at room temperature affords (NN)M(CO)4 derivatives, in which some complexes contain asymmetric substituted bis(pyrazol-1-yl)methane ligands. The X-ray crystal structure analyses indicate that the sulfur atoms in these complexes do not take part in the coordination to the metal centers, and S-rich bis(pyrazol-1-yl)methanes actually act as bidentate chelating ligands by two nitrogen atoms. It is also interesting that in order to reduce the repulsion of methyl groups with carbonyls, the methyl groups in these complexes are oriented away from the metal centers.  相似文献   

4.
Reactions of [NBu4][Re(O)Cl4] with bis(pyrazol-1-yl)methane (bpzm) and bis(pyrazol-1-yl)acetate (Hbpza) and with the lithium salts lithium [bis(3,5-dimethylpyrazol-1-yl)acetate] (Libdmpza) and lithium [bis(3,5-dimethylpyrazol-1-yl)methanesulfonate] (Libdmpzs) produce a series of new compounds containing either a kappa2-N,N bidentate pyrazolyl ligand [Re(O)(bpzm)Cl3 (1), Re(O)(bpzm)(OMe)Cl2 (2), Re(O)(bpzaOMe)(OMe)Cl2 (4)] or a kappa3-N,N,O heteroscorpionate [Re(O)(bpza)Cl2 (3), Re(O)(bdmpza)Cl2 isomers 5 and 6, Re(O)(bdmpza)(OMe)Cl (7), Re(O)(bdmpza)(OEt)Cl (8), Re(O)(bdmpzs)(OMe)Cl (9), Re(O)(bdmpzs)(OEt)Cl (10)]. X-ray analyses of 1 and 3 show in both cases a distorted octahedral environment around the rhenium atom. The nature and the geometry of the products are strongly determined by the reaction solvent and by the heteroscorpionate ligand itself. When scorpionates bear methylated pyrazolyl rings mixed heterocomplexes Re(O)(bdmpza)(glycol) (11) and Re(O)(bdmpzs)(glycol) (12) are obtained (H2glycol = ethylene glycol). Also 11 shows an octahedral geometry as assessed by X-ray study.  相似文献   

5.
Coordination polymers, {[Cd(2-mBIM)3](ClO4)2} n (1) and [Cd(BIM)2(NO3)2] n (2), have been prepared from the reaction of bis(2-methylimidazol-1-yl)methane(2-mBIM) with Cd(ClO4)2 and bis(imidazol-1-yl)methane (BIM) with Cd(NO3)2 in ethanol and water, respectively. Their structures were characterized by single crystal X-ray diffraction and IR spectroscopy. Compound 1 crystallizes in the rhombohedral space group R-3c with a = b = 12.3617(5) Å, c = 38.896(3) Å, γ = 120°, V = 5147.5(5) Å3, z = 6. The CdII occupies a crystallographic inversion center and is coordinated by six N atoms from six distinct 2-mBIM ligands to form a slightly distorted octahedral geometry. Each 2-mBIM is coordinated to two CdII cations, linking alternatively four CdII cations, resulting in a 32-membered M4L4 macrometallacycle. Compound 2 crystallizes in the monoclinic space group C2/m with a = 14.400(3) Å, b = 9.3894(18) Å, c = 8.6926(17) Å, β = 123.499(2)°, V = 980.1(3) Å3, z = 2. The Cd coordinates to four nitrogen atoms from four different BIM and two nitrates to form a slightly distorted octahedral geometry. The BIM ligands bridge to form a 1-D infinite double-bridged chain structure with 16-membered M2L2 macrometallacyclic structural units.  相似文献   

6.
The synthesis, structural characterization, and coordination behavior of ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligands (ortho-(OH)2C6H3-4-CHpz2, ortho-(OH)2C6H3-4-CH(3-Phpz)2, and ortho-(OH)2C6H3-4-CH(3-tBupz)2) with pyrazole, 3-phenylpyrazole, and 3-tert-butylpyrazole as donors are described. The reaction of a soluble PdCl2-source with ortho-(OH)2C6H3-4-CHpz2 in acetonitrile yielded the related square-planar N,N-coordinated Pd(II) dichloride complex, whereas treatment of ortho-(OH)2C6H3-4-CH(3-Phpz)2 or ortho-(OH)2C6H3-4-CH(3-tBupz)2 with PdCl2 in acetonitrile resulted in degradation of these ligands. The Pd(II) complexes trans-(3-PhpzH)2PdCl2 and trans-(3-tBupzH)2PdCl2 were isolated and fully characterized including X-ray diffraction analyses.  相似文献   

7.
Two novel tricarbonyl rhenium complexes based on the bidentate heterocyclic N–N ligands [bis(pyrazol-1-yl)methane(bpzm) and bis(3,5-dimethylpyrazol-1-yl)methane(bdmpzm)] have been synthesized by heating at reflux [Re(CO)5Cl] with the appropriate N–N ligand in toluene. The compounds have been characterized by IR and UV–Vis spectroscopy and X-ray analysis. Density functional theory (DFT) and time-dependent (TD) DFT calculations have been carried out for the [Re(CO)3(bdmpzm)Cl] complex.  相似文献   

8.
The reaction of bis(pyrazol-1-yl)methane tetracarbonylmolybdenum(0) or tungsten(0) complexes with RSnCl3 (R=Ph, Cl) at room temperature yielded heterobimetallic complexes CH2(Pz)2M(CO)3(Cl)(SnCl2R) (Pz represents substituted pyrazole; M=Mo or W; R=Ph or Cl) in good yields, which have been characterized by elemental analysis, 1H NMR and IR spectroscopy. The reaction of bis(3,5-dimethyl-4-halopyrazol-1-yl)methane tetracarbonyl tungsten with PhSnCl3 did not take place even in refluxing CH2Cl2. The electronic and steric characteristics of substituents on the pyrazole ring remarkably influence the structures of the products. The structures of CH2(3,5-Me2-4-BrPz)2W(CO)3(Cl)(SnCl3) (8) and CH2(4-BrPz)2Mo(CO)3(μ-Cl)(SnCl2Ph) (17) (Pz: pyrazole) determined by X-ray crystallography show that no chlorine-bridged W---Sn bond is observed in complex 8, while one chlorine-bridged Mo---Sn bond exists in complex 17. The Sn---M bond length is 2.7438(5) Å in complex 8 (W---Sn) and 2.7559(4) Å in complex 17 (Mo---Sn).  相似文献   

9.
Summary Liquid phase oxygenation of 1-tetralin, ethylbenzene, cyclohexane and toluene is describe using four catalyst precursors such as: (CH2)n(PzR)PdCl2 (n=1,2; R=H, Me) at T=100°C, Pair= 5.4 atm, substrate/catalyst ratio=100 for 3 h,. It was observed that the type of alkyl bridge between the pyrazolyl ligands has an effect on the catalytic activity.  相似文献   

10.
Synthesis procedures for new coordination compounds of iron(II) with tris(pyrazol-1-yl)methane (HC(pz)3), containing cluster anions in the outer sphere, of the composition [Fe{HC(pz)3}2][Mo6Cl14]?2H2O (I), [Fe{HC(pz)3}2][Mo6Br14]?H2O (II), and [Fe{HC(pz)3}2]2[Re6S8(CN)6]?2H2O (III) are developed. The compounds are studied by static magnetic susceptibility, electronic, IR, and Mössbauer spectroscopic methods. The magnetochemical study shows that in the polycrystalline phases of all compounds the spincrossover 1 А 1 ? 5 Т 2 is observed which is accompanied by thermochromism.  相似文献   

11.
Two dinuclear RhI-cyclooctadiene complexes [1,4-(cod)Rh(B(R’)pz2)-C6H4-(B(R’)pz2)Rh(cod)], linked by a ditopic scorpionate ligand, have been prepared and fully characterized (R′ = Ph (2), C6F5 (2F); pz = pyrazolide). Both compounds were tested as catalysts for phenylacetylene polymerization but showed no catalytic activity. Attempts at the synthesis of corresponding complexes of the sterically more demanding ligands (R′ = Ph (4), C6F5 (4F); pzPh = 3-phenylpyrazolide) resulted in B-N bond cleavage and formation of the dinuclear complex [(cod)Rh(μ-pzPh)2Rh(cod)] (5). Complex 5 proved to be an efficient catalyst for the preparation of highly stereoregular head-to-tail cis-transoidal poly(phenylacetylene).  相似文献   

12.
Four coordination polymers, [Ag(L1)](m-Hbdc) (1), [Ag(L1)]2(p-bdc)?·?8H2O (2), [Ag(Hbtc)(L1)][Ag(L1)]?·?2H2O (3) and [Ag2(L2)2](OH-bdc)2?·?4H2O (4), where L1?=?1,1′-(1,4-butanediyl)bis(imidazole), L2?=?1,2-bis(imidazol-1-ylmethyl)benzene, m-H2bdc?=?1,3-benzenedicarboxylic acid, p-H2bdc?=?1,4-benzenedicarboxylic acid, H3btc?=?1,3,5-benzenetricarboxylic acid, and OH–H2bdc?=?5-hydroxisophthalic acid, were synthesized under hydrothermal conditions. Compound 1 contains a–Ag-L1–Ag-L1–chain and a hydrogen-bonding interaction induced–(m-Hbdc)-(m-Hbdc)–chain. Compound 2 consists of two independent–Ag-L1–Ag-L1–chains. P-bdc anions are not coordinated. Hydrogen bonds form a 3D supramolecular structure. A novel (H2O)16 cluster is formed by lattice water molecules in 2. Compound 3 contains a–Ag-L1–Ag-L1–and a–Ag(Hbtc)-L1–Ag(Hbtc)-L1–chain. The packing diagram shows a 2D criss-cross supramolecular structure, with?π?···?π?and C–H ···?π?interactions stabilizing the framework. Compound 4 contains a [Ag2(L2)2]2+ dimer with hydrogen-bonding,?π?··· π, and Ag ··· O interactions forming a 3D supramolecular framework. The luminescent properties for these compounds in the solid state are discussed.  相似文献   

13.
Self-assembled monolayers (SAMs) of a bis(pyrazol-1-yl)pyridine-substituted thiol (bpp-SH) on Au (111)/mica were studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Using substrates precoated with perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA), preparation at elevated temperatures yields highly ordered layers whose structure is described by a rectangular (5 x radical3) unit cell containing one molecule. The bis(pyrazol-1-yl)pyridine (bpp) units exhibit pi-stacking along the 112 direction, and they are tilted significantly. We conclude the three imine nitrogen atoms in the bpp headgroup adopt a trans,trans arrangement.  相似文献   

14.
Two novel copper(II) complexes incorporating bis(pyrazol-1-yl)methane ligand (bpzm) have been synthesized. The compounds [CuCl(bpzm)2(H2O)]Cl·H2O (1) and [Cu(N3)2(bpzm)]n (2) have been studied by IR, UV-Vis spectroscopy and X-ray crystallography. The experimental studies on the compounds 1 and 2 have been accompanied computationally by the density functional theory (DFT) calculations.  相似文献   

15.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

16.
The lithium (1) and thallium (2) salts of five new tert-butyl-tris(3-hydrocarbylpyrazol-1-yl)borate ligands [t-BuTp(R)]- (R = H, a; Me, b; i-Pr, c; t-Bu, d; Ph, e) have been synthesized and characterized. Because of steric congestion at B, the reaction between t-BuBH3Li x 0.5 Et2O and excess 2,5-dimethylpyrazole Hpz(Me2) afforded the bis-pz(Me2) derivative, Tl[t-BuBH(3,5-Me2pz)2] (3) after metathesis with TlNO3. The compounds were characterized by elemental analysis and NMR spectroscopy. The Li salts 1a and 1c exhibit fluxional behavior on the NMR time scale in solution at room temperature. The solid-state 7Li and 11B NMR spectra of 1c suggest that this salt exists as a mixture of axial and equatorial isomers. The partial hydrolysis of 1d afforded the dimeric Li complex {Li[t-BuB(pz(t-Bu))2(mu-OH)]}2 (4). The crystal structure of 4 shows two Li cations encapsulated by the heteroscorpionate [t-BuB(OH)(3-t-Bupz)2]- ligands. A salt elimination reaction between FeCl2(THF)1.5 and 2 equiv of Li[t-BuTp(R)] (R = H, Me) followed by an in situ one-electron oxidation produced good yields of the homoleptic, paramagnetic low-spin iron(III) complexes [Fe(t-BuTp)2]PF6 (5) and [Fe(t-BuTp(Me))2]PF6 (6) that were characterized by elemental analyses, magnetic susceptibility measurements in solution and the solid phase, 1H NMR, high-resolution mass spectrometry, M?ssbauer spectroscopy, and single-crystal X-ray diffraction. The crystals are composed of discrete molecular units with the central Fe(III) ion in an almost perfectly octahedral coordination to six nitrogen atoms. Compound 5 has the shortest Fe-N bond lengths ever reported for [Fe(RTp(R)')2]+-type compounds.  相似文献   

17.
Mononuclear iron(II) coordination compounds with tris(pyrazol-1-yl)methane (HC(Pz)3) described as [Fe{HC(Pz)3}2]A2 × nH2O, where A = Cl, Br, I, 1/2 SO42−, n = 0–7, were synthesized. The compounds were studied by static magnetic susceptibility measurements, IR and UV/Vis spectroscopy, and powder X-ray diffraction. The crystal and molecular structures of all compounds were determined by single crystal X-ray diffraction.  相似文献   

18.
《Tetrahedron》1988,44(20):6429-6434
Flash vacuum pyrolysis of bis- and tris-(pyrazol-1-yl) methane was carried out. Alpha, gamma and radical eliminations were considered. The products actually formed correspond to a radical reaction. In the case of bis-(pyrazol-1-yl) methane, working at higher temperatures, pyrimidine was obtained. This compound is formed by rearrangement of a PzCH2 radical.  相似文献   

19.
New multidentate heteroscorpionate ligands, N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,5-Me2Pz)2 (1), N-phenyl-2,2-bis(3,4,5-trimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,4,5-Me3Pz)2 (2), and ethyl 2,2-bis(3,5-dimethylpyrazol-1-yl)dithioacetate EtSCSCH(3,5-Me2Pz)2 (8), have been synthesized and their coordination chemistry studied. These heteroscorpionate ligands can act as monodentate, bidentate, or tridentate ligands, depending on the coordinate properties of different metals. Reaction of W(CO)6 with 1 or 2 under UV irradiation yields monosubstituted carbonyl tungsten complexes W(CO)5L (L = 1 or 2), in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide acts as a monodentate ligand by the s-coordination to the tungsten atom. In addition, these monosubstituted tungsten complexes have also been obtained by heating ligand 1 or 2 with W(CO)5THF in THF. While similar reaction of Fe(CO)5 with 1, 2, or 8 under UV irradiation results in tricarbonyl iron complexes PhHNCSCH(3,5-Me2Pz)2Fe(CO)3 (5), PhHNCSCH(3,4,5-Me3Pz)2Fe(CO)3 (6), and EtSCSCH(3,5-Me2Pz)2Fe(CO)3 (9), respectively, in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide or ethyl 2,2-bis(pyrazol-1-yl)dithioacetate acts as a bidentate ligand through one pyrazolyl nitrogen atom and the CS π-bond in an η2-C,S fashion side-on bonded to the iron atom to adopt a neutral bidentate κ2-(π,N) coordination mode. Treatment of the lithium salt of 1 with Co(ClO4)2 · 6H2O gives complex [PhNCSCH(3,5-Me2Pz)2]2Co(ClO4) with the oxidation of cobalt(II) to cobalt(III), in which N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide acts as a tridentate monoanionic κ3-(N,N,S) chelating ligand by two pyrazolyl nitrogen atoms and the sulfur atom of the enolized thiolate anion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号