首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gao Y  Oshita K  Lee KH  Oshima M  Motomizu S 《The Analyst》2002,127(12):1713-1719
Chelating resins, two kinds of iminodiacetate derivatives (IDA) of cross-linked chitosan (CCS) were synthesized and investigated for adsorption capacity, matrix elimination and collection/concentration of analytes by a column pretreatment in a multi-element ICP-MS determination method. The adsorption behavior of 54 elements at the 10 ng ml(-1) level on chitosan derivatives in a packed mini-column was systematically examined. Almost 30 kinds of metal ions were recovered quantitatively at pH 5 with CCS-HP/IDA (cross-linked chitosan possessing N-2-hydroxypropyl iminodiacetic acid groups) column. Compared with available chitosan-iminodiacetate resin, CHITOPEARL CI-03, the recovery of the metal ions such as Cu, Pb and La is satisfactory with CCS-IDA (cross-linked chitosan possessing N,N-iminodiacetic acid groups) and CCS-HP/IDA using 2 M nitric acid as an eluent, which may be attributed to the difference of cross-linking and macroporous structure. Compared with Chelex-100, the adsorption efficiency is in the order: Chelex-100 > CCS-IDA > CCS-HP/IDA, especially in the chelating ability for alkaline earth metals. The resin with a longer spacer (CCS-HP/IDA) showed higher adsorption selectivity between heavy metal ions and alkaline earth metals at pH < 7. The separation efficiency of the major matrix cations in seawater (Na. K, Mg, Ca) has also been investigated, and matrix interference was negligible even in a seawater sample at pH 5 with CCS-HP/IDA. The recoveries of Mn at pH 5 with CCS-HP/IDA or Chelex-100 were almost 100%. However, those of Mg with each resin were 4 or 98%, respectively. The adsorption capacities of synthesized CCS-HP/IDA for Cu(II), Pb(II) and La(III) were 0.90, 0.65 and 0.34 mmol g(-1), respectively. Therefore, the chelating chitosan resins developed are applicable to the pretreatment of trace amounts of elements in various kinds of water samples.  相似文献   

2.
The reaction of [(cod)M(mu-OMe)]2 (M = Rh, Ir; cod = cycloocta-1,5-diene) with calix[4]arenes (LH4) in the molar ratio of 0.5-0.6:1 gave the rhodium and iridium pi-arene complexes [(cod)M(eta 6-LH3)], while that in the molar ratio of 1.1-1.5:1 (M = Rh) led to the selective formation of the dinuclear complexes [((cod)Rh)2(eta 6:eta 2-LH2)] in which one of the Rh(cod)+ fragments is coordinated by an eta 6-aryl group and the other by two phenolic oxygen atoms; the stepwise synthesis of the Rh-Ir heterobimetallic analogue of the latter complex was further achieved.  相似文献   

3.
Alkali Blue 6B-attached poly(2-hydroxyethyl methacrylate) (poly(HEMA)) microporous films were investigated as chelate forming sorbents for heavy metal removal. Poly(HEMA) microporous films were prepared by UV-initiated photo-polymerization of HEMA in the presence of an initiator (azobisisobutyronitrile (AIBN)). Alkali Blue 6B was attached covalently. These films with a swelling ratio of 58%, and carrying 14.8 mmol Alkali Blue 6B m(-2) which were then used in the removal of Cd(II), Zn(II) and Pb(II) from aqueous media. Adsorption rates were very high, equilibrium was achieved in about 30 min. The maximum adsorption of heavy metal ions onto the Alkali Blue 6B-attached films were 41.4 mmol m(-2) for Cd(II), 52.4 mmol m(-2) for Zn(II), and 64.5 mmol m(-2) for Pb(II). When the heavy metal ions competed during the adsorption from a mixture the adsorption values for Cd(II), Zn(II) and Pb(II) were quite close. Heavy metal ions were desorbed by using 0.1 M HNO(3). A significant amount of the adsorbed heavy metal ions (up to 95%) could be desorbed in 30 min. Repeated adsorption/desorption cycles showed the feasibility of these novel dye-attached microporous films for heavy metal removal.  相似文献   

4.
The structure and orientation of adsorbed myoglobin as directed by metal-histidine complexation at the liquid-film interface was studied as a function of time using neutron and X-ray reflectivity (NR and XR, respectively). In this system, adsorption is due to the interaction between iminodiacetate (IDA)-chelated divalent metal ions Ni(II) and Cu(II) and histidine moieties at the outer surface of the protein. Adsorption was examined under conditions of constant area per lipid molecule at an initial pressure of 40 mN/m. Adsorption occurred over a time period of about 15 h, allowing detailed characterization of the layer structure throughout the process. The layer thickness and the in-plane averaged segment volume fraction were obtained at roughly 40 min intervals by NR. The binding constant of histidine with Cu(II)-IDA is known to be about four times greater than that of histidine with Ni(II)-IDA. The difference in interaction energy led to significant differences in the structure of the adsorbed layer. For Cu(II)-IDA, the thickness of the adsorbed layer at low protein coverage was < or = 20 A and the thickness increased almost linearly with increasing coverage to 42 A. For Ni(II)-IDA, the thickness at low coverage was approximately 38 A and increased gradually with coverage to 47 A. The in-plane averaged segment volume fraction of the adsorbed layer independently confirmed a thinner layer at low coverage for Cu(II)-IDA. These structural differences at the early stages are discussed in terms of either different preferred orientations for isolated chains in the two cases or more extensive conformational changes upon adsorption in the case of Cu(II)-IDA. Subphase dilution experiments provided additional insight, indicating that the adsorbed layer was not in equilibrium with the bulk solution even at low coverages for both IDA-chelated metal ions. We conclude that the weight of the evidence favors the interpretation based on more extensive conformational changes upon adsorption to Cu(II)-IDA.  相似文献   

5.
Preparation of a new type of magnetic non-porous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres with hydrophilic properties containing coupled iminodiacetic acid (IDA) is described. The prepared microspheres were used for the immobilization of Ni(II) or Fe(III) ions to show their application in protein binding studies. Human IgG was bound to magnetic Ni(II)-IDA-modified microspheres and conditions of its adsorption and elution were optimized. Non-specific binding of the protein to magnetic microspheres in the absence of Ni(II) ions was low. Fe(III) ions immobilized on magnetic IDA-modified microspheres were used for the specific binding of porcine pepsin, as a model phosphoprotein. The ability of phosphate buffer to release the adsorbed enzyme from the microspheres and a low adsorption of the dephosphorylated protein indicate the participation of phosphate groups in the pepsin interaction. The elaborated method represents a rapid technique that can be used not only for the separation of proteins but also for analytical purposes.  相似文献   

6.
Poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) [poly(HEMA-GMA)] cryogel was synthesized by cryopolymerization technique at frozen temperature. Iminodiacetic acid (IDA) was then attached covalently to the cryogel as a chelating agent. Then, poly(HEMA-GMA)-IDA cryogel was chelated with Ni(II) ions and this novel metal affinity support was used for adsorption of urease from its aqueous solution. Urease adsorption experiments were carried out in a continuous system by using a peristaltic pump. Maximum urease adsorption onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was found to be 11.30 mg/g cryogel at pH 5.0 acetate buffer and in 25 °C medium temperature. Urease adsorption capacity decreased with increasing ionic strength and increasing chromatographic flow rate. Adsorption kinetics of urease onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was also investigated and it was found that Langmuir adsorption model is applicable for this adsorption study. This novel immobilized metal affinity chromatography support was used 10 times without any decrease at their adsorption capacity. It was also observed that urease enzyme was repeatedly adsorbed and desorbed without significant lost in enzymatic activity.  相似文献   

7.
Two new Schiff bases were prepared by condensing acetylferrocene and 1,1′-diacetylferrocene with S-methyl- dithiocarbazate. Complexes of the two ligands acetylferrocene-1-hydrazono-S-methyldithiocarbazate HmaL and diacetylferrocene-1,1′-dihydrazono-S-methyldithio-carbazate H2daL, with copper(II), nickel(II) and cobalt(II) ions were isolated. The ligands coordinate to the metal ions through either their thioketone or thioenol forms. Both mono- and bis-ligand metal complexes as well as bis-metal complexes of the general formulae: [(H2daL)M]2+, [(daL)M], [(HmaL)2M]2+, [(maL)2M], [(HmaL)2MX2], [(H2daL)M2X4] and [(daL)M2X2] were prepared. All compounds under investigation were characterized and some of their physicochemical properties are reported. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The adsorption of metal ions such as Cu(II), Cr(III), Cd(II) and Ni(II)and dyes such as Acid Blue 25, Calmagite and Eriochrome Blue Black Bis performed onto amidoximated cellulose (Am-Cell). Different ways are possible for theadsorption of these pollutants onto Am-Cell : adsorption of each pollutantaloneon the support, or cumulative adsorption of both metal ions and dyes on the samesupport. In the last case, the pollutants may be adsorbed simultaneously from aunique solution, or successively from two different solutions, whatever theorder. Am-Cell loaded or not with metal ions shows a high capacity for dyeadsorption. Ternary complexes involving metal/dye/amidoxime are formed. Theobserved stoichiometries are 1/1/1 with Cu(II), Cr(III) and Cd(II) ions and1/1/2with Ni(II) ion. A quasi-total and specific desorption of either metal ions (bytreatment with ethylenediaminetetracetic salt) or of dyes (by heating inaqueoussolution) is possible from these ternary complexes. Concerning the dyes, manysuccessive adsorption/desorption cycles are possible without a noticeablechange in the adsorption capacity.  相似文献   

9.
The adsorption properties of various peptides and proteins, lacking histidyl groups, on immobilized Cu(II), Ni(II), Zn(II) and Co(II) ions are described; at pH 6 and below they were little retarded. At higher pH the retention became pronounced for iminodiacetate (IDA)-Cu(II) gel. This effect seems to be related to the presence of a terminal alpha-amino group; in the absence of this group the retention of the protein was largely eliminated. At pH 8.5 a terminal alpha-amino group is adsorbed as strongly as a histidyl group. IDA-Ni(II), IDA-Zn(II) and IDA-Co(II) gels display little or no attraction for the terminal alpha-amino group of a protein.  相似文献   

10.
Hashemi P  Olin A 《Talanta》1997,44(6):1037-1053
The equilibrium and kinetic properties of an iminodiacetate (IDA) based chelating ion exchanger with a crosslinked agarose, Novarose, as support has been investigated. The second and third acidity constants and some complexation constants of the ligand were determined for adsorbents with metal binding capacities of 140, 55 and 18 micromol ml(-1), respectively. The adsorbent of medium capacity showed fast adsorption and desorption of Cu(II), Cd(II), Ni(II) and Ca(II) both in the batch and column mode. It was found to be about 50 times faster than Chelex-100 (50-100 mesh) in accumulation of these metal ions in the batch mode. Studies of the adsorbent in a flow system, using a 5 mm x 6 mm i.d. column, indicated quantitative accumulation of Cu(II), Cd(II), and Ni(II) at volumetric flow rates up to 110 ml min(-1). Linear calibration curves with r > 0.999 and signal enhancement factors up to 1300 were obtained. Preconcentration by a FIA system connected to an ICP-AES instrument will make simultaneous measurement of ultratrace concentrations of a number of metal ions possible within reasonable cycle times due to the high flow rates which can be used with the adsorbent. Trace amounts of cadmium and copper in tap water were determined successfully at 60 ml min(-1). However, copper and nickel in tap water are strongly complexed and do not accumulate quantitatively even at low flow rates. Hence a sample pretreatment is needed. Copper was completely adsorbed after UV-treatment of the sample.  相似文献   

11.
The interaction between metal ions and bovine serum albumin (BSA) was studied by using a piezoelectric quartz crystal (PQC) arranged in the electrode-separated configuration. A silanized surface of the PQC was coated with a BSA membrane via a coupling reaction with glutaraldehyde. The frequency shifts obtained from PQC coated with a BSA membrane suggested that various kinds of metal ions could be adsorbed onto the BSA membrane from aqueous solutions containing a low concentration of metal ions (2 or 10 micromol dm(-3)), only when the BSA was denatured with an alkaline solution. Anionic species of Pt(IV) and Au(III) were adsorbed onto the denatured BSA membrane from an acetic acid solution at pH 2.2, and cationic species of Cd(II), Zn(II), Co(II), Ni(II), Cu(II), and Ag(I), and cations, such as Ca2+, Ba2+, and Mg2+, were adsorbed from ammonia buffer at pH 9.5, whereas Al(III), Cr(III), Fe(III), Hg(II), and Pb(II) were hardly adsorbed. The adsorption mechanisms of these metal ions are discussed, based on the electrostatic interaction between the metal ions and the denatured BSA membrane, and complex formation between the metal ions and amino acid residues of the denatured BSA. Further, the PQC coated with a denatured BSA membrane was applied to the determination of Pt and Cd, using large frequency shifts for Pt(IV) and Cd(II).  相似文献   

12.
Modified crosslinked polyacrylamides having different functional groups prepared by transamidation reaction in aqueous and non‐aqueous medium and by Hofmann reaction were used as chelating agents for removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions at different pH values. Under non‐competitive conditions, polymers adsorbed different amounts of metal ions, depending on their functional groups and swelling abilities. The metal ion adsorption capacities of polymers changed between 0.11–1.71 mmol/g polymer. Under competitive conditions, while the polymers having mainly secondary amine groups were highly selective for Cu(II) ions (99.4%), those having mainly secondary amide and carboxylate groups have shown high selectivity towards Pb(II) ions (99.5%). The selectivity towards Cu(II) ion decreased and Pb(II) ion selectivity increased by the decrease of the pH of the solutions. The high initial adsorption rate (<10 min) suggests that the adsorption occurs mainly on the polymer surface. A regeneration procedure by treatment with dilute HCl solution showed that the modified polymers could be used several times without loss of their adsorption capacities.  相似文献   

13.
本文制备了两个金属有机配位体,肉桂醛二茂铁基甲酰腙(HL^1)和二[(1-肉桂酰肼基乙基)环戊二烯基]铁(H~2L^2)及它们与一些过渡金属的配合物:ML~2^1[M=Cu(II)],ML^2[(M=Cu(II)和Zn(II)],M(HL^1)~2Cl~2[M=Cd(II),Co(II)和Ni(II)],M(H~2L^2)Cl~2[M=Mn(II),Zn(II),Co(II)和Cd(II)]。这两个配位体以烯醇式与M(OAc)~2.nH~2O中心离子配位,与MCl~2.nH~2O则以酮式配位。  相似文献   

14.
The adsorption of toxic heavy metal cations, i.e., Cu(II), Cd(II), and Pb(II), from metal-EDTA mixture solutions on a composite adsorbent having a heterogeneous surface, i.e., bauxite waste red mud, has been investigated and modeled with the aid of a modified surface complexation approach in respect to pH and complexant dependency of heavy metal adsorption. EDTA was selected as the modeling ligand in view of its wide usage as an anthropogenic chelating agent and abundance in natural waters. The adsorption experiments were conducted for metal salts (nitrates), metal-EDTA complexes alone, or in mixtures containing (metal+metal-EDTA). The adsorption equilibrium constants for the metal ions and metal-EDTA complexes were calculated. For all studied cases, the solid adsorbent phase concentrations of the adsorbed metal and metal-EDTA complexes were found by using the derived model equations with excellent compatibility of experimental and theoretically generated adsorption isotherms. The model was useful for metal and metal-EDTA mixture solutions either at their natural pH of equilibration with the sorbent, or after pH elevation with NaOH titration up to a certain pH. Thus adsorption of every single species (M(2+) or MY(2-)) or of possible mixtures (M(2+)+MY(2-)) at natural pH or after NaOH titration could be calculated by the use of simple quadratic model equations, once the initial concentrations of the corresponding species, i.e., [M(2+)](0) or [MY(2-)](0), were known. The compatibility of theoretical and experimental data pairs of adsorbed species concentrations was verified by means of nonlinear regression analysis. The findings of this study can be further developed so as to serve environmental risk assessment concerning the expansion of a heavy metal contaminant plume with groundwater move ment in soil consisting of hydrated-oxide type minerals. Copyright 2000 Academic Press.  相似文献   

15.
Competitive adsorption is the usual situation in real applications, and it is of critical importance in determining the overall performance of an adsorbent. In this study, the competitive adsorption characteristics of all the combinations of binary mixtures of aqueous metal ion species Ca2+(aq), Cd2+(aq), Pb2+(aq), and Hg2+(aq) on a functionalized activated carbon were investigated. The porous structure of the functionalized active carbon was characterized using N2 (77 K) and CO2 (273 K) adsorption. The surface group characteristics were examined by temperature-programmed desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, acid/base titrations, and measurement of the point of zero charge (pHpzc). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for both single-ion and binary mixtures of these species. Hydrolysis of metal species in solution may affect the adsorption, and this is the case for adsorption of Hg2+(aq) and Pb2+(aq). Competitive adsorption decreases the amounts of individual metal ions adsorbed, but the maximum amounts adsorbed still follow the order Hg2+(aq) > Pb2+(aq) > Cd2+(aq) > Ca2+(aq) obtained for single metal ion adsorption. The adsorption isotherms for single metal ion species were used to develop a model for competitive adsorption in binary mixtures, involving exchange of ions in solution with surface proton sites and adsorbed metal ions, with the species having different accessibilities to the porous structure. The model was validated against the experimental data.  相似文献   

16.
In this study, N,N'-bis[(3,4-dichlorophenyl)methylidene]cyclohexane-1,4-diamine (L) and its Cu(II), Co(II) and Ni(II) complexes were prepared and characterized by the analytical and spectroscopic methods. The analytical data show the composition of the metal complex to be [M(2)L(Cl)(4)(H(2)O)(2)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. The compound (L) behaves as a monodentate ligand. But, obtained complexes have binuclear nature. The electrochemical properties of the metal complexes are dependent on reversible, irreversible and quasi-reversible redox waves in the anodic and cathodic regions due to oxidation and reduction of the metal ions. The single crystal of the ligand (L) was obtained from CH(3)CN solution. Space group and crystal system of the ligand are P2(1)/C and monoclinic, respectively.  相似文献   

17.
An investigation into the selectivity of an iminodiacetic acid (IDA) modified silica gel column for transition and heavy metal ions using non-chelating inorganic eluents has been carried out. A number of eluent parameters were investigated to determine the exact retention mechanism taking place and to control selectivity. The parameters studied were eluent ionic strength and the nature of the inorganic salt used, eluent pH and eluent temperature. The results obtained showed how despite certain metal ions exhibiting similar stability constants with the bonded IDA groups, careful control of each of the above parameters, in particular eluent chloride ion concentration and eluent temperature, could result in large changes in selectivity. Optimal conditions for the isocratic and gradient separation of Mg(II), Ca(II), Mn(II), Cd(II), Co(II), Zn(II) and Pb(II) were determined. An isocratic method using a 0.035 M KCl, 0.065 M KNO3 (pH 2.5) eluent was successfully applied to the determination of Mn(II), Cd(II), Co(II) and Zn(II) at concentrations between 20 and 121 microg/l in a freshwater certified reference material (NIST 1640).  相似文献   

18.
Commercially available microporous polyamide hollow fibres are modified by acid hydrolysis to activate the reactive groups and subsequently binding of the ligand, i.e. Cibacron Blue F3GA. Then the Cibacron Blue F3GA-derived hollow fibres were loaded with different metal ions (i.e. Zn(II), Cu(II), Ni(II)) to form the metal chelate. The internal polymer matrix was characterised by scanning electron microscopy. The effects of pH, initial concentration of lysozyme, metal type and temperature on the adsorption of lysozyme to the metal–chelated hollow fibres were examined in a batch reactor. The non-specific adsorption of lysozyme onto the polyamide hollow fibres was 1.8 mg/g. Cibacron Blue F3GA immobilisation increased the lysozyme adsorption up to 62.3 mg/g. Metal–chelated hollow fibres showed a significant increase of the adsorption efficiency. Lysozyme adsorption capacities of Zn(II), Cu(II) and Ni(II)-chelated hollow fibres were different. The maximum capacities of Zn(II), Cu(II) or Ni(II)-chelated hollow fibres were 144.2, 75.2 and 68.6 mg/g, respectively. Significant amount of the adsorbed lysozyme (up to 97%) was eluted in 1 h in the elution medium containing 1.0 M NaSCN at pH 8.0 and 25 mM EDTA at pH 4.9. Repeated adsorption–desorption process showed that this novel metal–chelated polyamide hollow fibres are suitable for lysozyme adsorption.  相似文献   

19.
Organosilane-modified (island-type) electrodes of 5 and 10 microm were fabricated and used to detect trace amounts of metal ions using atomic force microscopy. The smaller electrode had a lower limit of detection due to the enhancement in electron tunneling through metal ions that are adsorbed between the conductive-tip (mobile) and the surface (fixed) electrode. To simulate the detection of metal ions at concentrations below 10(-3) mM, a sectional adsorption mechanism is proposed, which satisfactorily explains the adsorption of Cu(II) and Hg(II) to the amine and thiol moieties of the 5 microm-sized electrode.  相似文献   

20.
The electrochemistry of 16 different water-soluble porphyrins of the type [(TMpyP)M(II)]4+ (X-)4 or [(TMpyP)M(III)Cl]4+ (Cl-)4 is reported in nonaqueous media where TMpyP is the dianion of meso-tetrakis(N-methylpyridiniumyl)porphyrin and X- = Cl- or BPh4-. These studies were carried out to examine the effect of the metal ion and porphyrin counterion (X-) on the electrochemical properties of the TMpyP complexes with a special emphasis being given to the overall number of electrons added and the number of electrode processes upon reduction. All of the investigated compounds with electroinactive central metal ions undergo an overall addition of six electrons. This occurs for most compounds via three two-electron-transfer steps, but more than three processes are observed for porphyrins having metal ions with a low electronegativity (e.g., Cd(II)). The first reduction of each porphyrin having an M(II) ion or an electroinactive M(III) ion yields a porphyrin dianion which is characterized by an intense band located close to 800 nm, and this reversible reduction is followed by further reductions of the 1-methyl-4-pyridyl groups at more negative potentials. Four of the compounds with electroactive central metal ions, [(TMpyP)M(III)Cl]4+(Cl-)4 (M = Co, Fe, Mn, or Au), undergo an additional reversible M(III)/M(II) process prior to reactions involving the porphyrin pi-ring system and the 1-methyl-4-pyridyl substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号