首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.  相似文献   

2.
林福忠  马松华 《物理学报》2014,63(4):40508-040508
利用Riccati方程展开法和变量分离法,得到了(2+1)维色散长波方程的变量分离解.根据得到的孤波解,构造出该方程新颖的复合波局域结构,研究了复合波随时间的演化.  相似文献   

3.
Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed.  相似文献   

4.
The (2+1)-dimensional Konopelchenko-Dubrovsky equation is an important prototypic model in nonlinear physics, which can be applied to many fields. Various nonlinear excitations of the (2+1)-dimensional Konopelchenko-Dubrovsky equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this paper, with the help of the Riccati equation, the (2+1)-dimensional Konopelchenko-Dubrovsky equation is solved by the consistent Riccati expansion (CRE). Furthermore, we obtain the soliton-cnoidal wave interaction solution of the (2+1)-dimensional Konopelchenko-Dubrovsky equation.  相似文献   

5.
Yakup Y&#  ld&#  r&#  m  Emrullah Ya&#  ar 《中国物理 B》2017,26(7):70201-070201
We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.  相似文献   

6.
套格图桑  那仁满都拉 《物理学报》2011,60(9):90201-090201
本文为了获得非线性发展方程的无穷序列新精确解,进一步研究获得了第二种椭圆方程的几类新型解和Bäcklund变换.在此基础上,借助符号计算系统Mathematica,用带强迫项变系数组合KdV方程、(2+1)维和(3+1)维变系数Zakharov-Kuznetsov 方程为应用实例,构造了无穷序列新精确解.这里包括无穷序列Jacobi 椭圆函数光滑孤立子解、无穷序列Jacobi椭圆函数紧孤立子解、无穷序列三角函数紧孤立子解和无穷序列尖峰孤立子解. 关键词: 第二种椭圆方程 Bä cklund 变换 变系数非线性发展方程 无穷序列新精确解  相似文献   

7.
张文玲  马松华  陈晶晶 《物理学报》2014,63(8):80506-080506
借助Maple符号计算软件,利用Pdccati方程(ζ′=a_0+a_1ζ+a_2ζ~2)展开法和变量分离法,得到了(2+1)维Korteweg-de Vries方程(KdV)包含q=C_1x+C_2y+C_3t+R(x,y,t)的复合波解,根据得到的孤立波解,构造出KdV方程新颖的复合波裂变和复合波湮灭等局域激发结构。  相似文献   

8.
A new Baecklund transformation for (2 1)-dimensional KdV equation is first obtained by using homogeneous balance method. And making use of the Baecklund transformation and choosing a special seed solution, we get special types of solitary wave solutions. Finally a general variable separation solution containing two arbitrary functions is constructed, from which abundant localized coherent structures of the equation in question can be induced.  相似文献   

9.
In this paper, the generalized tanh function method is extended to (2 1)-dimensional canonical generalized KP (CGKP) equation with variable coefficients. Taking advantage of the Riccati equation, many explicit exact solutions,which contain multiple soliton-like and periodic solutions, are obtained for the (2 1)-dimensional CGKP equation with variable coefficients.  相似文献   

10.
In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system of the admitted one-dimensional subalgebras.Secondly,by analyzing the reduced equation,three types of similarity solutions are derived,such as multi-soliton like solutions,variable separations solutions,and KdV type solutions.  相似文献   

11.
In this paper, using the generalized G'/G-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burgers equations with variable coefficients. Many exact solutions of the equations are obtained in terms of elliptic functions, hyperbolic functions, trigonometric functions, and rational functions.  相似文献   

12.
In a recent article(Commun. Theor. Phys. 67(2017) 207), three(2+1)-dimensional equations — KP equation, cylindrical KP equation and spherical KP equation, have been reduced to the same Kd V equation by using different transformation of variables, respectively. In this short note, by adding an adjustment item to original transformation, three more general transformation of variables corresponding to above three equations have been given.Substituting the solutions of the Kd V equation into our transformation of variables, more new exact solutions of the three(2+1)-dimensional equations can be obtained.  相似文献   

13.
杨征  马松华  方建平 《物理学报》2011,60(4):40508-040508
在符号计算软件Maple的帮助下,利用改进的Riccati方程映射法得到了(2+1)维Zakharov-Kuznetsov方程(ZK)的新显式精确解. 根据得到的解,研究了ZK方程的特殊孤子结构. 关键词: 改进的Riccati方程映射法 Zakharov-Kuznetsov方程 精确解 孤子结构  相似文献   

14.
In this paper, the general projective Riccati equation method is applied to derive variable separation solutions of the (2+1)-dimensional variable coefficient Broer-Kaup system. By further studying, we find that these variable separation solutions obtained by PREM, which seem independent, actually depend on each other. Based on the variable separation solution and choosing suitable functions p and q, new types of fusion and fission phenomena among bell-like semi-foldons are firstly investigated.  相似文献   

15.
An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, line soliton solutions, and doubly periodic wave solutions.  相似文献   

16.
A new generalized tanh function method is used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the Riccati equation, which has more new solutions. More new multiple soliton-like solutions are obtained for the (3 1)-dimensional Burgers equation with variable coefficients.  相似文献   

17.
By using a homogeneous balance method, we give new soliton-like solutions for the (2+1)-dimensional KdV equation and the (2+1)-dimensional breaking soliton equation. Solitary wave soIutions are shown to be a special case of the present results.  相似文献   

18.
Using the extension homogeneous balance method,we have obtained some new special types of soliton solutions of the (2+1)-dimensional KdV equation.Starting from the homogeneous balance method,one can obtain a nonlinear transformation to simple (2+1)-dimensional KdV equation into a linear partial differential equation and two bilinear partial differential equations.Usually,one can obtain only a kind of soliton-like solutions.In this letter,we find further some special types of the multisoliton solutions from the linear and bilinear partial differential equations.  相似文献   

19.
吴红玉  马松华  方建平 《物理学报》2010,59(10):6719-6724
利用一个投射方程和变量分离法,得到了(2+1)维Korteweg-de Vries(KdV)方程的新显式精确解.根据得到的孤立波解,构造出KdV方程的传播孤子结构.利用一个新的混沌系统研究了孤子的混沌行为。  相似文献   

20.
杨先林  唐驾时 《中国物理》2007,16(2):310-317
Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji {\it et al in their auxiliary equation method. By using this method and these new solutions the combined Korteweg--de Vries (KdV) and modified KdV (mKdV) equation and (2+1)-dimensional Broer--Kaup--Kupershmidt system are investigated and abundant exact travelling wave solutions are obtained that include new solitary wave solutions and triangular periodic wave solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号