共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive refinement techniques are developed in this paper for the meshless Galerkin boundary node method for hypersingular boundary integral equations. Two types of error estimators are derived. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two consecutive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the numerical solution itself and its projection. These error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization scheme is presented to accomodate the non-local property of hypersingular integral operators for the needed computable local error indicators. The convergence of the adaptive meshless techniques is verified theoretically. To confirm the theoretical results and to show the efficiency of the adaptive techniques, numerical examples in 2D and 3D with high singularities are provided. 相似文献
2.
In this paper, a novel meshless technique termed the random integral quadrature (RIQ) method is developed for the numerical solution of the second kind of the Volterra integral equations. The RIQ method is based on the generalized integral quadrature (GIQ) technique, and associated with the Kriging interpolation function, such that it is regarded as an extension of the GIQ technique. In the GIQ method, the regular computational domain is required, in which the field nodes are scattered along straight lines. In the RIQ method however, the field nodes can be distributed either uniformly or randomly. This is achieved by discretizing the governing integral equation with the GIQ method over a set of virtual nodes that lies along straight lines, and then interpolating the function values at the virtual nodes over all the field nodes which are scattered either randomly or uniformly. In such a way, the governing integral equation is converted approximately into a system of linear algebraic equations, which can be easily solved. 相似文献
3.
WANG Bo WANG Rui & XU YueSheng Academy of Mathematics Systems Science Chinese Academy of Sciences Beijing China School of Information Science Engineering Graduate University of the Chinese Academy of Sciences 《中国科学 数学(英文版)》2010,(1)
We propose a fully discrete fast Fourier-Galerkin method for solving an integral equation of the first kind with a logarithmic kernel on a smooth open arc,which is a reformulation of the Dirichlet problem of the Laplace equation in the plane.The optimal convergence order and quasi-linear complexity order of the proposed method are established.A precondition is introduced.Combining this method with an efficient numerical integration algorithm for computing the single-layer potential defined on an open arc,we... 相似文献
4.
Pallop Huabsomboon Hideaki Kaneko 《Journal of Computational and Applied Mathematics》2010,234(5):1466-1472
In this paper, we comment on the recent papers by Yuhe Ren et al. (1999) [1] and Maleknejad et al. (2006) [7] concerning the use of the Taylor series to approximate a solution of the Fredholm integral equation of the second kind as well as a solution of a system of Fredholm equations. The technique presented in Yuhe Ren et al. (1999) [1] takes advantage of a rapidly decaying convolution kernel k(|s−t|) as |s−t| increases. However, it does not apply to equations having other types of kernels. We present in this paper a more general Taylor expansion method which can be applied to approximate a solution of the Fredholm equation having a smooth kernel. Also, it is shown that when the new method is applied to the Fredholm equation with a rapidly decaying kernel, it provides more accurate results than the method in Yuhe Ren et al. (1999) [1]. We also discuss an application of the new Taylor-series method to a system of Fredholm integral equations of the second kind. 相似文献
5.
Lü Tao 《Journal of Mathematical Analysis and Applications》2006,324(1):225-237
Based on a new generalization of discrete Gronwall inequality in [L. Tao, H. Yong, A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equality of the second kind, J. Math. Anal. Appl. 282 (2003) 56-62], Navot's quadrature rule for computing integrals with the end point singularity in [I. Navot, A further extension of Euler-Maclaurin summation formula, J. Math. Phys. 41 (1962) 155-184] and a transformation in [P. Baratella, A. Palamara Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2004) 401-418], a new quadrature method for solving nonlinear weakly singular Volterra integral equations of the second kind is presented. The convergence of the approximation solution and the asymptotic expansion of the error are proved, so by means of the extrapolation technique we not only obtain a higher accuracy order of the approximation but also get a posteriori estimate of the error. 相似文献
6.
Numerical treatment of retarded boundary integral equations by sparse panel clustering 总被引:1,自引:0,他引:1
7.
Reducible quadrature rules generated by boundary value methods are considered in block version and applied to solve the second kind Volterra integral equations and Volterra integro-differential equations. These extended block boundary value methods are shown to possess both excellent stability properties and high accuracy for Volterra-type equations. Numerical experiments are presented and the efficiency, accuracy and stability of the schemes are confirmed. 相似文献
8.
S. Bazm E. Babolian 《Communications in Nonlinear Science & Numerical Simulation》2012,17(3):1215-1223
The Gauss product quadrature rules and collocation method are applied to reduce the second-kind nonlinear two-dimensional Fredholm integral equations (FIE) to a nonlinear system of equations. The convergence of the proposed numerical method is proved under certain conditions on the kernel of the integral equation. An iterative method for approximating the solution of the obtained nonlinear system is provided and its convergence is proved. Also, some numerical examples are presented to show the efficiency and accuracy of the proposed method. 相似文献
9.
A posteriori error estimation is an important tool for reliable and efficient Galerkin boundary element computations. For hypersingular integral equations in 2D with a positive-order Sobolev space, we analyse the mathematical relation between the (h???h/2)-error estimator from [S. Ferraz-Leite and D. Praetorius, Simple a posteriori error estimators for the h-version of the boundary element method, Computing 83 (2008), pp. 135–162], the two-level error estimator from [M. Maischak, P. Mund, and E. Stephan, Adaptive multilevel BEM for acoustic scattering, 585 Comput. Methods Appl. Mech. Eng. 150 (1997), pp. 351–367], and the averaging error estimator from [C. Carstensen and D. Praetorius, Averaging techniques for the a posteriori bem error control for a hypersingular integral equation in two dimensions, SIAM J. Sci. Comput. 29 (2007), pp. 782–810]. All of these a posteriori error estimators are simple in the following sense: first, the numerical analysis can be done within the same mathematical framework, namely localization techniques for the energy norm. Second, there is almost no implementational overhead for the realization. 相似文献
10.
P. H. M. Wolkenfelt 《BIT Numerical Mathematics》1981,21(2):232-241
Quadrature rules, generated by linear multistep methods for ordinary differential equations, are employed to construct a wide class of direct quadrature methods for the numerical solution of first kind Volterra integral equations. Our class covers several methods previously considered in the literature. The methods are convergent provided that both the first and second characteristic polynomial of the linear multistep method satisfy the root condition. Furthermore, the stability behaviour for fixed positive values of the stepsizeh is analyzed, and it turns out that convergence implies (fixedh) stability. The subclass formed by the backward differentiation methods up to order six is discussed and illustrated with numerical examples. 相似文献
11.
George C. Hsiao 《Applied Numerical Mathematics》2011,61(9):1017-1029
In this paper, we reduce the classical two-dimensional transmission problem in acoustic scattering to a system of coupled boundary integral equations (BIEs), and consider the weak formulation of the resulting equations. Uniqueness and existence results for the weak solution of corresponding variational equations are established. In contrast to the coupled system in Costabel and Stephan (1985) [4], we need to take into account exceptional frequencies to obtain the unique solvability. Boundary element methods (BEM) based on both the standard and a two-level fast multipole Galerkin schemes are employed to compute the solution of the variational equation. Numerical results are presented to verify the efficiency and accuracy of the numerical methods. 相似文献
12.
In this paper we consider boundary integral methods appliedto boundary value problems for the positive definite Helmholtz-typeproblem U + 2U = 0 in a bounded or unbounded domain,with the parameter real and possibly large. Applications arisein the implementation of spacetime boundary integralmethods for the heat equation, where is proportional to 1/(t),and t is the time step. The corresponding layer potentials arisingfrom this problem depend nonlinearly on the parameter and havekernels which become highly peaked as , causing standard discretizationschemes to fail. We propose a new collocation method with arobust convergence rate as . Numerical experiments on a modelproblem verify the theoretical results. 相似文献
13.
In this paper we consider a collocation method for solving Fredholm integral equations of the first kind, which is known to be an ill-posed problem. An “unregularized” use of this method can give reliable results in the case when the rate at which smallest singular values of the collocation matrices decrease is known a priori. In this case the number of collocation points plays the role of a regularization parameter. If the a priori information mentioned above is not available, then a combination of collocation with Tikhonov regularization can be the method of choice. We analyze such regularized collocation in a rather general setting, when a solution smoothness is given as a source condition with an operator monotone index function. This setting covers all types of smoothness studied so far in the theory of Tikhonov regularization. One more issue discussed in this paper is an a posteriori choice of the regularization parameter, which allows us to reach an optimal order of accuracy for deterministic noise model without any knowledge of solution smoothness. 相似文献
14.
15.
In this paper, an algorithm based on the regularization and integral mean value methods, to handle the ill-posed multi-dimensional Fredholm equations, is introduced. The application of this algorithm is based on the transforming the first kind equation to a second kind equation by the regularization method. Then, by converting the first kind to a second kind, the integral mean value method is employed to handle the resulting Fredholm integral equations of the second kind. The efficiency of the approach will be shown by applying the procedure on some examples. 相似文献
16.
A. V. Ozhegova 《Russian Mathematics (Iz VUZ)》2008,52(10):32-39
We study a projective method for solving singular integral equations of the first kind with the Cauchy kernel. Depending on the index of the equation, we introduce pairs of weight spaces which represent a restriction of the space of summable functions. We prove the correctness of the stated problem. We obtain sufficient conditions for the convergence of the projective method in the integral metric. 相似文献
17.
含积分边界条件的分数阶微分方程边值问题的正解的存在性 总被引:1,自引:0,他引:1
研究了含积分边界条件的分数阶微分方程的边值问题,首先给出格林函数及性质,其次将问题转化为一个等价的积分方程,最后应用Krasnoselkii及Leggett-Williams不动点定理得到了一个及多个正解的存在性,推广了以往的结果. 相似文献
18.
This paper is devoted to exact and approximate methods (first of all, direct ones) for the solution of integro-operational equations. Themost attention is paid to the theoretical substantiation of the collocation method for the solution of the mentioned equations within the general theory of approximate methods developed by L. V. Kantorovich. 相似文献
19.
Carmelina Frammartino 《Applied mathematics and computation》2010,215(12):4141-4153
A Nyström method is proposed for solving Fredholm integral equations equivalent to boundary value problems of order s with complete differential equations. The stability and the convergence of the proposed procedure are proved. Some numerical examples are provided in order to illustrate the accuracy of the method and to compare the procedure with some other ones given in the literature. 相似文献