首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2-D molecularly imprinted monolayer (2-D MIM) approach was used to prepare a simple and robust sensor for nitroaromatic compounds with 2,4-dinitrotoluene (DNT) as the model compound, which is a precursor and analog for explosive 2,4,6-trinitrotoluene (TNT). In contrast to studies utilizing long-chain hexadecylmercaptan self-assembled monolayers (SAM)s for sensing, a shorter-chain alkylthiol (i.e., butanethiol SAM) was utilized for DNT detection. The role of the chain length of the coadsorbed alkylthiol was emphasized with a matched template during solution adsorption. Semiempirical PM3 quantum calculations were used to determine the molecular conformation and complexation of the adsorbates. A switching mechanism was invoked on the basis of the ability of the template analyte to alter the packing arrangement of the alkylthiol SAMs near defect sites as influenced by the DNT-ethanol solvent complex. A 2-D MIM was formed on the Au surface electrode of a quartz crystal microbalance (QCM), which was then used to sense various concentrations of the analyte. Interestingly, the 2-D MIM QCM also enabled the selective detection of DNT even in a mixed solution of competing molecules, demonstrating the selectivity figure of merit. Likewise, electrochemical impedance spectroscopy (EIS) data at different concentrations of DNT confirmed the 2-D MIM effectiveness for sensing based on the interfacial conformation and electron-transport properties of the imprinted butanethiol SAM.  相似文献   

2.
We investigate the influence of the native staircase nanostructure of a Au(111) vicinal surface upon the self-assembly of alkylthiols. Through a comparison with standard alkylthiol SAMs deposited on Au(111) flat surfaces, we show that on the vicinal surface the octanethiol monolayer (OT SAM) reproduces the nanopatterned staircase structure, giving rise to a new kind of molecular layer self-ordered on the nanometer scale. The SAM's structure is determined by UHV STM and PM-IRRAS measurements and exhibits a specific behavior relative to the nanostructured substrate. The differences from the film grown on Au(111) are attributed to the influence of step edges on the molecular packing, leading to a specific 2D crystallographic order through the step edges.  相似文献   

3.
We report a computational study of conformations and charge transport characteristics of biphenyldithiol (BPDT) monolayers in the (sqrt.3 x sqrt.3)R30 degrees packing ratio sandwiched between Au(111) electrodes. From force-field molecular-dynamics and annealing simulations of BPDT self-assembled monolayers (SAMs) with up to 100 molecules on a Au(111) substrate, we identify an energetically favorable herringbone-type SAM packing configuration and a less-stable parallel packing configuration. Both SAMs are described by the (2sqrt.3 x sqrt.3)R30 degrees unit cell including two molecules. With subsequent density-functional theory calculations of one unit cell of the (i) herringbone SAM with the molecular tilt angle theta approximately 15 degrees , (ii) herringbone SAM with theta approximately 30 degrees , and (iii) parallel SAM with theta approximately 30 degrees, we confirm that the herringbone packing configuration is more stable than the parallel one but find that the energy variation with respect to the molecule tilting within the herringbone packing is very small. Next, by capping these SAMs with the top Au(111) electrode, we prepare three molecular electronic device models and calculate their coherent charge transport properties within the matrix Green's function approach. Current-voltage (I-V) curves are then obtained via the Landauer-Buttiker formula. We find that at low-bias voltages (|V| < or = 0.2 V) the I-V characteristics of models (ii) and (iii) are similar and the current in model (i) is smaller than that in (ii) and (iii). On the other hand, at higher-bias voltages (|V| > or 0.5 V), the I-V characteristics of the three models show noticeable differences due to different phenyl band structures. We thus conclude that the BPDT SAM I-V characteristics in the low-bias voltage region are mainly determined by the -Au [corrected] interaction within the individual molecule-electrode contact, while both intramolecular conformation and intermolecular interaction can affect the BPDT SAM I-V characteristics in the high-bias voltage region.  相似文献   

4.
Self-assembled monolayers of cationic donor-(pi-bridge)-acceptor dyes coupled with anionic donors exhibit asymmetric current-voltage (I-V) characteristics when contacted by Au or PtIr probes. Rectification ratios of 3000 at +/- 1 V are obtained from Au-S-C10H20-A+-pi-D|D-|Au structures in which the cationic moiety is 5-(4-dimethylaminobenzylidene)-5,6,7,8-tetrahydro-isoquinolinium and the counterion is copper phthalocyanine-3,4',4',4'-tetrasulfonate (SAM ). Similar behaviour, with a high rectification ratio of 700-900 at +/- 1 V, is also obtained for the CuPc(SO3-)4 salt of 4-[2-(4-dimethylaminonaphthalen-1-yl)-vinyl]-quinolinium (SAM ). The properties are dependent upon the D-pi-A+ moieties which, for these highly rectifying salts, have sterically locked non-planar structures causing the conjugation to be effectively broken. Its effect on the electrical asymmetry is less spectacular when the cationic species is sterically unhindered: the rectification ratio decreases to 15-70 at +/- 1 V for films of the 4-[2-(4-dimethylaminophenyl)-vinyl]-pyridinium salt (SAM ), which has single-ring substituents on opposite sides of the -CH=CH- bridge and an almost planar D-pi-A+ structure. Rectification ratios from the sterically hindered structures are on a par with electrical asymmetries from metal-insulator-metal (MIM) devices where oxide-induced Schottky barriers dominate the behaviour.  相似文献   

5.
Electrochemical deposition of metals (platinum or gold) only on top of an organothiolate, 1,4-benzenedimethanethiol (BDMT) or hexanedithiol (HDT), self-assembled monolayer (SAM) on a Au(111) substrate was achieved by electrochemical reduction of PtCl(4)(2-) or AuCl(4)(-) ion, which was preadsorbed on one free thiol end group of the dithiol SAM formed on a Au surface, in a metal-ion-free sulfuric acid solution at potentials more negative than the reduction potential of the metal ion. Angle-resolved X-ray photoelectron spectroscopy (AR-XPS) measurement after the reduction of preadsorbed PtCl(4)(2-) ion on BDMT/Au(111) electrode showed the presence of Pt not underneath but on top of the BDMT SAM. After a negative potential scan of the Pt/BDMT/Au(111) electrode to -1.30 V in 0.1 M KOH solution, a typical cyclic voltammogram of a clean Au(111) electrode was obtained, showing that the BDMT SAM with a Pt layer was reductively desorbed. These results proved that a Pt-BDMT SAM-Au substrate sandwich structure without a short circuit between the two metals was successfully constructed by this technique. Furthermore, a decanethiol (DT) monolayer was constructed on a Au layer, which was formed by the reduction of preadsorbed AuCl(4)(-) ion on HDT/Au(111) electrode. The formation of DT/Au/HDT/Au(111) structure was confirmed as two cathodic peaks corresponding to reductive desorption of DT from Au on top of the HDT/Au(111) at -0.97 V and that of Au/ HDT from Au(111) at -1.12 V were observed when potential was scanned negatively to -1.35 V.  相似文献   

6.
The reductive and oxidative desorption of a BODIPY labeled alkylthiol self-assembled monolayer (SAM) on Au was studied using electrochemical methods coupled with fluorescence microscopy and image analysis procedures to monitor the removal of the adsorbed layer. Two SAMs were formed using two lengths of the alkyl chain (C10 and C16). The BODIPY fluorescent moiety used is known to form dimers which through donor-acceptor energy transfer results in red-shifted fluorescence. Fluorescence from the monomer and dimer were used to study the nature of the desorbed molecules during cyclic step changes in potential. The reductive desorption was observed to occur over a small potential window (0.15 V) signified by an increase in capacitance and in fluorescence. Oxidative readsorption was also observed through a decrease in capacitance and a lack of total removal of the fluorescent layer. Removal by oxidative desorption occurred at positive potentials over a broad potential range near the oxidation of the bare Au. The resulting fluorescence showed that the desorbed molecules remained near the electrode surface and were not dispersed over the 20 s waiting time. The rate of change of the fluorescence for oxidative desorption was much slower than the reductive desorption. Comparing monomer and dimer fluorescence intensities indicated that the dimer was formed on the Au surface and desorbed as a dimer, rather than forming from desorbed monomers near the electrode surface. The dimer fluorescence can only be observed through energy transfer from the excited monomer suggesting that the monomers and dimers must be in close proximity in aggregates near the electrode. The fluorescence yield for longer alkyl chain was always lower presumably due to its decreased solubility in the interfacial region resulting in a more efficient fluorescence quenching. The oxidative desorption process results in a significantly etched or roughened electrode surface suggesting the coupling of thiol oxidative removal and Au oxide formation which results in the removal of Au from the electrode.  相似文献   

7.
The penetration resistance of a prototypical model-membrane system (HS-(CH2)11-OH self-assembled monolayer (SAM) on Au(111)) to the tip of an atomic force microscope (AFM) is investigated in the presence of different solvents. The compressibility (i.e., height vs tip load) of the HS-(CH2)11-OH SAM is studied differentially, with respect to a reference structure. The reference consists of hydrophobic alkylthiol molecules (HS-(CH2)17-CH3) embedded as nanosized patches into the hydrophilic SAM by nanografting, an AFM-assisted nanolithography technique. We find that the penetration resistance of the hydrophilic SAM depends on the nature of the solvent and is much higher in the presence of water than in 2-butanol. In contrast, no solvent-dependent effect is observed in the case of hydrophobic SAMs. We argue that the mechanical resistance of the hydroxyl-terminated SAM is a consequence of the structural order of the solvent-SAM interface, as suggested by our molecular dynamics simulations. The simulations show that in the presence of 2-butanol the polar head groups of the HS-(CH2)11-OH SAM, which bind only weakly to the solvent molecules, try to bind to each other, disrupting the local order at the interface. On the contrary, in the presence of water the polar head groups bind preferentially to the solvent that, in turn, mediates the release of the surface strain, leading to a more ordered interface. We suggest that the mechanical stabilization effect induced by water may be responsible for the stability of even more complex, real membrane systems.  相似文献   

8.
The development of new methods for the facile synthesis of hybrid nanomaterials is of great importance due to their importance in nanotechnology. In this work, we report a new method to deposit Au nanoparticles on the surface of single-walled carbon nanotubes (SWCNTs). Our approach consists of a one pot synthesis in which Au nanoparticles are generated in the presence of a photoreducing agent (Irgacure-2959) and carboxyl or polymer-functionalized SWCNTs (f-SWCNTs). We have observed that when carbon nanotubes are functionalized with polymers containing pendant amino groups, the latter can act as specific nucleation sites for well-dispersed deposition of Au nanoparticles. The surface coverage of the Au nanoparticles can be observed by transmission electron spectroscopy. These observations are compared to that of carboxyl functionalized SWCNTs, in which less surface coverage was observed. The f-SWCNT/Au nanocomposites were also characterized by UV-vis, infrared, and Raman spectroscopy and thermogravimetric analysis (TGA). This facile and effective route can be implemented to deposit gold nanoparticles on other surface-functionalized carbon nanotubes.  相似文献   

9.
Patterned cell cultures obtained by microcontact printing have been modified in situ by a microelectrochemical technique. It relies on lifting cell-repellent properties of oligo(ethylene glycol)-terminated self-assembled monolayers (SAMs) by Br2, which is produced locally by an ultramicroelectrode of a scanning electrochemical microscope (SECM). After Br2 treatment the SAM shows increased permeability and terminal hydrophobicity as characterized by SECM approach curves and contact angle measurements, respectively. Polarization-modulation Fourier transform infrared reflection-absorption spectroscopic (PM FTIRRAS) studies on macroscopic samples show that the Br2 treatment removes the oligo(ethelyene glycol) part of the monolayer within a second time scale while the alkyl part of the SAM degrades with a much slower rate. The lateral extension of the modification can be limited because heterogeneous electron transfer from the gold support destroys part of the electrogenerated Br2 once the monolayer is locally damaged in a SECM feedback configuration. This effect has been reproduced and analyzed by exposing SAM-modified samples to Br2 in the galvanic cell Au|SAM|5 microM Br2 + 0.1 M Na2SO4||10 microM KBr + 0.1 M Na2SO4|Au followed by an PM FTIRRAS characterization of the changes in the monolayer system.  相似文献   

10.
Self-assembled monolayer (SAM) formation of alkanethiols with ionic, hydrophilic terminal functionalities onto various O(2) plasma/ethanol pretreated gold substrates was characterized to explore the effect of gold surface oxide on the SAM packing quality. Oxygen adsorption induced by the Au(2)O(3) surface residuals are observed on the plasma-oxidized and O(2) plasma/ethanol-rinsed pretreated Au surfaces while no obvious adsorbed oxygen is found on freshly coated and O(2) plasma/ethanol sonication pretreated Au substrates. A model for the formation of hydrophilic terminated SAMs, -OH, -COOH, and -PO(3)H(2) is proposed. According to this model, the ionic and/or other binding interactions between the surface Au(2)O(3) and the alkanethiol hydrophilic terminal end as well as the interactions between the terminal SAM functionalities could cause the packing disorder found on these three SAMs formed on Au substrates containing Au(2)O(3) surface species. Copyright 2001 Academic Press.  相似文献   

11.
Application of biotechnology in nanofabrication has an advantage to produce functional building-block materials that may not have synthetic counterparts. Here we introduced a new type of building block, antibody nanotubes, and demonstrated anchoring them on complementary antigen arrays via antibody-antigen recognition. Biological recognition between the antibody nanotubes and the antigen arrays permitted recognition-driven assembly of ordered nanotube arrays. The array of antigens was written by using the tip of an atomic force microscope (AFM) on alkylthiol self-assembled monolayer (SAM)-coated Au substrates via nanografting. After antigens were immobilized onto the shaved regions of the alkylthiol SAMs with the AFM tip, antibody nanotubes, produced by incubating antibodies in template nanotube solutions, were selectively attached onto the antigen regions. This technique is very useful when multiple building blocks are necessary to address specific locations on substrates because simultaneous immobilization of multiple antibody nanotubes at specific complementary binding positions can be achieved in a single process.  相似文献   

12.
This contribution describes the synthesis of gold nanorod (Au NR)/single-wall carbon nanotube (SWCNT) heterojunctions assembled directly on Si/SiOx substrates. SWCNTs are attached to amine-functionalized Si/SiOx substrates, and Au monolayer-protected clusters (MPCs) are adsorbed to the surface of SWCNTs through hydrophobic interactions. Seed-mediated reduction of HAuCl4 with ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB) onto the Au MPCs leads to the growth of larger Au nanostructures directly on the SWCNTs. Au NRs account for 19% of the nanostructures, some of which are attached directly to the sidewall and some at the ends of the SWCNTs. Raman spectroscopic measurements of SWCNTs before and after growth of the Au nanostructures reveal that the presence of Au leads to an approximately 50-fold enhancement of the Raman scattering signal. Combining 1D nanostructures of different materials (Au and carbon in this example) is of fundamental interest and may find use in nanoelectronics, chemical sensing, electrochemical, and spectroscopy applications.  相似文献   

13.
The kinetics of alkylthiol-capped gold nanoparticle (RS/Au-NP) adsorption to alkylthiol/Au self-assembled monolayers (RS/Au-SAMs) has been studied using SPR (surface plasmon resonance) spectroscopy. Variation of the alkylthiol chain terminus (CH3, COOH) and solvent (H2O, hexane) provides insight into the relative importance of solvation energies (in the context of surface energies) and RS/Au-NP structure on adsorption kinetics. The kinetics, fitted to the Langmuir kinetic model, yield adsorption and desorption rate constants. DeltaG(ads) derived from kinetic data are compared to calculated values of work of adhesion (W(adh)), derived from the corresponding surface energies. The absence of a deltaG(ads) - W(adh) correlation arises because the measured kinetics are not reporting the approach to equilibrium and/or because there are factors (i.e., local chain packing defects, surface hydration differences, or particle-particle interactions) not accounted for in calculated W(adh) values.  相似文献   

14.
Stability of self-assembled monolayers on titanium and gold   总被引:1,自引:0,他引:1  
Methyl- and hydroxyl-terminated phosphonic acid self-assembled monolayers (SAMs) were coated on Ti from aqueous solution. Dodecyl phosphate and dodecyltrichlorosilane SAMs were also coated on Ti using solution-phase deposition. The stability of SAMs on Ti was investigated in Tris-buffered saline (TBS) at 37 degrees C using X-ray photoelectron spectroscopy, contact angle goniometry, and atomic force microscopy. For comparison purposes, a hydroxyl-terminated thiol SAM was coated on Au, and its stability was also investigated under similar conditions. In TBS, a significant proportion of phosphonic acid or phosphate molecules were desorbed from the Ti surface within 1 day, while the trichlorosilane SAM on Ti or thiol SAM on Au was stable for up to 7 days under similar conditions. The stability of hydroxyl-terminated phosphonic acid SAM coated Ti and thiol SAM coated Au was investigated in ambient air and ultraviolet (UV) light. In ambient air, the phosphonic acid SAM on Ti was stable for up to 14 days, while the thiol SAM on Au was not stable for 1 day. Under UV-radiation exposure, the alkyl chains of the phosphonic acid SAM were decomposed, leaving only the phosphonate groups on the Ti surface after 12 h. Under similar conditions, decomposition of alkyl chains of the thiol SAM was observed on the Au surface accompanied by oxidation of thiolates.  相似文献   

15.
Soft landing of mass-selected peptide ions onto reactive self-assembled monolayer surfaces (SAMs) was performed using a newly constructed ion deposition apparatus. SAM surfaces before and after soft landing were characterized ex situ using time-of-flight secondary-ion mass spectrometry (TOF-SIMS) and infrared reflection-absorption spectroscopy (IRRAS). We demonstrate that reactive landing (RL) results in efficient covalent linking of lysine-containing peptides onto the SAM of N-hydroxysuccinimidyl ester-terminated alkylthiol on gold (NHS-SAM). Systematic studies of the factors that affect the efficiency of RL revealed that the reaction takes place upon collision and is promoted by the kinetic energy of the ion. The efficiency of RL is maximized at ca. 40 eV collision energy. At high collision energies the RL efficiency decreases because of the competition with scattering of ions off the surface. The reaction yield is independent of the charge state of the projectile ions, suggesting that peptide ions undergo efficient neutralization upon collision. Chemical and physical properties of the SAM surface are also important factors that affect the outcome of RL. The presence of chemically reactive functional groups on the SAM surface significantly improves the reaction efficiency. RL of mass- and energy-selected peptide ions on surfaces provides a highly specific approach for covalent immobilization of biological molecules onto SAM surfaces.  相似文献   

16.
The reversible assembly of β-cyclodextrin-functionalized gold NPs (β-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the β-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of β-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and β-CD-capped Au NPs. As a result, the potential-induced uptake and release of β-CD Au NPs to and from the surface is accomplished. The competitive binding of β-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of β-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.  相似文献   

17.
The attachment of a bifunctional iodo-organo-phosphinate compound to gold (Au) surfaces via chemisorption of the iodine atom is described and used to chelate a redox-active metal cluster via the phosphinate group. XPS, AFM, and electrochemical measurements show that (4-iodo-phenyl)phenyl phosphinic acid (IPPA) forms a tightly bound self-assembled monolayer (SAM) on Au surfaces. The surface coverage of an IPPA monolayer on Au was quantified by an electrochemical method and found to be 0.40 +/- 0.03 nmol/cm2, roughly corresponding to 0.4 monolayers. We show that the Au/IPPA SAM, but not the underivatized Au, adsorbs Mn4O4(Ph2PO2)6 from solution by a phosphinate exchange reaction to yield Au/IPPA/Mn4O4(Ph2PO2)5 SAM. The resulting SAM is firmly bound and not removed by sonication, as confirmed by manganese XPS (Mn 2p1/2) and by AFM. Electrochemistry confirms that Mn4O4(Ph2PO2)6 is anchored on the Au/IPPA surface and that redox chemistry can be mediated between the electrode and the surface-attached complex. Mn4O4(Ph2PO2)6 contains the reactive Mn4O46+ cubane core, a redox-active bioinspired catalyst.  相似文献   

18.
Myoglobin (Mb) has been successfully immobilized on a self-assembled monolayer (SAM) of L-cysteine (Cys) on a gold electrode, Au/Cys. The presence of a pair of well-defined and nearly reversible waves centered at ca. 0.086 V vs Ag/AgCl (pH 6.5) suggests that the native character of Mb heme Fe(III/II) redox couple has been obtained. The formal potential of Mb on Cys SAM exhibited pH-dependent variation in the pH range of 5-9 with a slope of 55 mV/pH, indicating that the electron transfer is accompanied by a single proton exchange. Thermodynamic and kinetic aspects of Mb adsorption processes on Au/Cys were studied by using voltammetric and quartz-crystal microbalance methods. The Au/Cys electrode with immobilized Mb exhibited electrocatalytic activity toward ascorbic acid (AA) oxidation with an overpotential decrease of over 400 mV and a linear dependence of current on the AA concentration from 0.5 to 5.0 mmol L(-1).  相似文献   

19.
Tang N  Zheng J  Sheng Q  Zhang H  Liu R 《The Analyst》2011,136(4):781-786
A novel H(2)O(2) sensor based on enzymatically induced deposition of electroactive polyaniline (PANI) at a horseradish peroxide (HRP)/aligned single-wall carbon nanotubes (SWCNTs) modified Au electrode is fabricated, and its electrochemical behaviors are investigated. Electrochemical impedance spectroscopy of the sensor confirmed the formation of PANI on SWCNTs through the HRP catalytic reaction. Cyclic voltammograms of PANI/HRP/SWCNTs modified Au electrodes showed a pair of well-defined redox peaks of PANI with reduction peak potentials of 0.211 and oxidation peak potentials of 0.293 V in 0.1 M HOAc-NaOAc (pH 4.3) solution. The oxidation peak current response of PANI is linearly related to H(2)O(2) concentration from 2.5 μM to 50.0 μM with a correlation coefficient of 0.9923 and a sensitivity of 200 μA mM(-1). The detection limit is determined to be 0.9 μM with a signal-to-noise ratio of 3. Thus, the synergistic performance of the enzyme, the highly efficient polymerization of PANI, and the templated deposition of SWCNTs provided an extensive platform for the design of novel electrochemical biosensors.  相似文献   

20.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are surface coatings that efficiently prevent nonspecific adhesion of biomolecules to surfaces. Here, we report on SAM formation of the PEG thiol CH3O(CH2CH2O)17NHCO(CH2)2SH (PEG(17)) on three types of Au films: thermally evaporated granular Au and two types of Au films from hydrogen flame annealing of granular Au, Au(111), and Au silicide. The different Au surfaces clearly affects the morphology and mechanical properties of the PEG(17) SAM, which is shown by AFM topographs and force distance curves. The two types of SAMs found on flame-annealed Au were denoted "soft" and "hard" due to their difference in stiffness and resistance to scratching by the AFM probe. With the aim of nanometer scale patterning of the PEG(17), the SAMs were exposed by low energy (1 kV) electron beam lithography (EBL). Two distinctly different types of behaviour were observed on the different types of SAM; the soft PEG(17) SAM was destroyed in a self-developing process while material deposition was dominant for the hard PEG(17) SAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号