首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳氢化合物在工业生产中发挥着重要的作用,其分离纯化过程是工业生产中重要的环节。低碳烃气体的物理化学性质十分相似,仅在分子尺寸和不饱和度等方面有微小差异,分离困难。传统的精馏等分离方式能耗高、有时效率较低。金属有机骨架材料由于其优异的性能(高比表面积、高孔隙率、结构尺寸可控)在吸附分离方面发挥了重要作用。计算模拟方法能够在微观层次上描述吸附分离过程,起到实验无法替代的作用。本文综述了计算模拟用于探索金属有机骨架吸附分离低碳烃的最新研究进展,探讨了其在金属有机骨架吸附分离低碳烃研究中存在的问题,并展望了发展前景。  相似文献   

2.
A novel porous aromatic framework, PAF-52, was obtained via the polymerization of tetrahedral mono- mer tetrakis(4-cyanodiphenyl) methane(TCDPM) with the aid of a facile ionothermal method. PAF-52 has a surface area of 1159 m2/g(BET), and shows a considerable high separation ability of CO2 in N2 or CH4 respectively at room temperature, using gas-chromatography experiments as evidence,  相似文献   

3.
A highly water and thermally stable metal-organic framework (MOF) Zn2(Pydc)(Ata)2 (1, H2Pydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) was synthesized on a large scale using inexpensive commercially available ligands for efficient separation of C2H2 from CH4 and CO2. Compound 1 could take up 47.2 mL/g of C2H2 under ambient conditions but only 33.0 mL/g of CO2 and 19.1 mL/g of CH4. The calculated ideal absorbed solution theory (IAST) selectivities for equimolar C2H2/CO2 and C2H2/CH4 were 5.1 and 21.5, respectively, comparable to those many popular MOFs. The Qst values for C2H2, CO2, and CH4 at a near-zero loading in 1 were 43.1, 32.1, and 22.5 kJ mol−1, respectively. The practical separation performance for C2H2/CO2 mixtures was further confirmed by column breakthrough experiments.  相似文献   

4.
In this paper we used MOF-5 and Cu3(BTC)2 to separate CO2/CH4 and CH4/N2 mixtures under dynamic conditions. Both materials were synthesized and pelletized, thus allowing for a meaningful characterization in view of process scale-up. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). By performing breakthrough experiments, we found that Cu3(BTC)2 separated CO2/CH4 slightly better than MOF-5. Because the crystal structure of Cu3(BTC)2 includes unsaturated accessible metal sites formed via dehydration, it predominantly interacted with CO2 molecules and more easily captured them. Conversely, MOF-5 with a suitable pore size separated CH4/N2 more efficiently in our breakthrough test.  相似文献   

5.
采用分子模拟与吸附理论研究了天然气成分在有序介孔碳材料CMK-3上的吸附和分离.巨正则系综蒙特卡罗(GCMC)模拟表明,CH4和CO2气体的较优存储条件分别为208 K、4 MPa和298 K、6 MPa,其最大超额吸附量分别为10.07和14.85 mmol· g-1.基于双位Langmuir-Freundlich (DSLF)模型,使用理想吸附溶液理论(IAST)预测了不同二元混合物在CMK-3中的分离行为,发现吸附选择性Sco2/CH4与ScH4/N2比较接近,在298 K和4 MPa下约等于3,而N2-CO2体系中的CO2吸附选择性较高,可达到7.5,说明CMK-3是一种适合吸附和分离天然气组分的碳材料.  相似文献   

6.
姜宁  邓志勇  王公应  刘绍英 《化学进展》2014,26(10):1645-1654
金属有机框架(MOFs)材料是当今的研究热点之一,是一类颇有潜力成为适用于CO2吸附和分离的重要材料。本文从MOFs的发展及其所具有的特点、MOFs用于CO2的吸附与分离所取得的突破性进展以及MOFs的传统合成及绿色制备方法三个方面展开论述。主要论述了MOFs适用于CO2吸附的原理,及其相对于传统的CO2吸附材料所具有的特点和优势,亦阐述了MOFs修饰与调变的方法。列出了MOFs用于单组分CO2吸附及CO2/CH4、CO2/N2吸附分离的结果。同时,针对传统MOFs制备方法不适宜大规模CO2捕集材料的生产,特别论述了机械化学合成法和新兴的潮湿矿物风化法,其均具有绿色化、无溶剂、低能耗和简单等特点,是一类较有研究价值和应用潜力的技术。随着温室效应和不可再生石化燃料的消耗等环境和能源问题的日趋严峻,研究及开发适用于CO2捕集与封存技术的MOFs新材料迫在眉睫,且任重而道远。  相似文献   

7.
The quantum mechanics (QM) method and grand canonical Monte Carlo (GCMC) simulations are used to study the effect of lithium cation doping on the adsorption and separation of CO2, CH4, and H2 on a twofold interwoven metal–organic framework (MOF), Zn2(NDC)2(diPyNI) (NDC=2,6‐naphthalenedicarboxylate; diPyNI=N,N′‐di‐(4‐pyridyl)‐1,4,5,8‐naphthalenetetracarboxydiimide). Second‐order Moller–Plesset (MP2) calculations on the (Li+–diPyNI) cluster model show that the energetically most favorable lithium binding site is above the pyridine ring side at a distance of 1.817 Å from the oxygen atom. The results reveal that the adsorption capacity of Zn2(NDC)2(diPyNI) for carbon dioxide is higher than those of hydrogen and methane at room temperature. Furthermore, GCMC simulations on the structures obtained from QM calculations predict that the Li+‐doped MOF has higher adsorption capacities than the nondoped MOF, especially at low pressures. In addition, the probability density distribution plots reveal that CO2, CH4, and H2 molecules accumulate close to the Li cation site. The selectivity results indicate that CO2/H2 selectivity values in Zn2(NDC)2(diPyNI) are higher than those of CO2/CH4. The selectivity of CO2 over CH4 on Li+‐doped Zn2(NDC)2(diPyNI) is improved relative to the nondoped MOF.  相似文献   

8.
在减少CO2排放、实现碳中和的背景下, 金属有机框架(MOFs)在清洁能源领域展现出广阔应用前景. 提出一种机器学习和分子模拟协同的分层筛选策略, 快速、准确地从134185个假设MOFs中识别出具有最佳CH4/H2分离性能的吸附剂. 首先, 根据MOFs的结构性质, 筛掉孔径或体积比表面积不恰当的吸附剂, 初筛后MOFs的数量减至62278个. 接下来, 抽取10% MOFs将结构和化学混合描述符作为特征, 利用随机森林分别构建变压吸附和真空变压吸附过程中其对CH4的吸附剂性能得分(APS)预测模型. 相比于其他模型构建策略, 基于本策略构建的模型具有最优预测准确性, 可用于余下MOFs的性能预测. 随后根据APS预测值排序, 筛选出Top 1000的MOFs并利用分子模拟修正预测结果, 进一步确定了10个最佳MOFs. 最后, 对描述符的重要性进行解释, 揭示了实现模型在不同操作场景下的迁移具有潜力, 为未来开发适用于多操作场景下的高性能MOFs筛选方法提供了一条高效的研究路径和方法.  相似文献   

9.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

10.
The permeation of CO2 and CH4 and their binary mixtures through a DDR membrane has been investigated over a wide range of temperatures and pressures. The synthesized DDR membrane exhibits a high permeance and maintains a very high selectivity for CO2. At a total pressure of 101 kPa, the highest selectivity for CO2 in a 50∶50 feed mixture was found to be over 4000 at 225 K. This is ascribed to the higher adsorption affinity, as well as to the higher mobility for the smaller CO2 molecules in the zeolite, preventing the bypassing of the CH4 through the membrane. An engineering model, based on the generalized Maxwell-Stefan equations, has been used to interpret the transport phenomena in the membrane. The feasibility of DDR membranes as applied to CO2 removal from natural gas or biogas is anticipated.  相似文献   

11.
Large basis CCSD(T) calculations are used to calculate the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. . The relative energy of the excited singlet state of Fe(CO)4 with respect to the ground triplet state is not known experimentally, and various lower levels of theory predict very different results. Upon extrapolating to the infinite basis set limit, and including corrections for core-core and core-valence correlation, scalar relativity, and multi-reference character of the wavefunction, the best CCSD(T) estimate for the spin-state splitting in iron tetracarbonyl is 2 kcal mol(-1). Calculation of the dissociation energy of 1Fe(CO)4(L) into singlet fragments, taken together with known experimental behaviour of triplet Fe(CO)4, provides independent evidence for the fact that the spin-state splitting is smaller than 3 kcal mol(-1). These calculations highlight some of the challenges involved in benchmark calculations on transition metal containing systems.  相似文献   

12.
A flexible microporous metal organic framework structure, [Zn(2)(bpdc)(2)bpe]·2DMF, exhibits high selectivity in adsorbing CO(2) over N(2), CH(4) and a number of other small gases at room temperature and low pressure.  相似文献   

13.
Sizova  A. A.  Grintsevich  S. A.  Kochurin  M. A.  Sizov  V. V.  Brodskaya  E. N. 《Colloid Journal》2021,83(3):372-378
Colloid Journal - Grand canonical Monte Carlo simulations were performed to study the occupancy of structure I multicomponent gas hydrates by CO2/CH4, CO2/N2, and N2/CH4 binary gas mixtures with...  相似文献   

14.
程敏  王诗慧  罗磊  周利  毕可鑫  戴一阳  吉旭 《化学学报》2022,80(9):1277-1288
相比于传统热驱动的低温蒸馏工艺, 基于金属有机框架(Metal-organic frameworks, MOFs)的膜分离是一种在技术和成本上可行的乙烷/乙烯分离替代方案. 为了加速MOF膜在这一气体分离领域中的应用, 本工作提出了两步筛选策略对12,020个真实MOF膜材料进行了大规模计算筛选, 其中MISQIQ04表现出最高的乙烷/乙烯膜选择系数(4.16)和较高的乙烷渗透率(4.35×105 Barrer). 通过结构-性能关系分析, 可以发现窄孔径和低孔隙率的MOFs是选择性分离乙烷的最佳膜材料, 并且乙烷的选择性吸附对乙烷/乙烯膜分离过程起着主导作用. 与传统计算筛选方法相比, 本工作所提出的筛选策略降低了约87.1%的计算时间成本. 为了进一步缩短模拟时间, 本工作还开发了机器学习分类模型以实现对高性能MOF膜的快速预筛选并探讨了该模型的可移植性. 结果表明, 增加数据集的多样性有助于提高所开发模型的可移植性和泛化能力.  相似文献   

15.
Metal-organic frameworks (MOFs) with open metal sites are promising candidates for CO(2) capture from dry flue gas. We applied in situ(13)C NMR spectroscopy to investigate CO(2) adsorbed in Mg(2)(dobdc) (H(4)dobdc = 2,5-dihydroxyterephthalic acid; Mg-MOF-74, CPO-27-Mg), a key MOF in which exposed Mg(2+) cation sites give rise to exceptional CO(2) capture properties. Analysis of the resulting spectra reveals details of the binding and CO(2) rotational motion within the material. The dynamics of the motional processes are evaluated via analysis of the NMR line shapes and relaxation times observed between 12 and 400 K. These results form stringent and quantifiable metrics for computer simulations that seek to screen and improve the design of new MOFs for CO(2) capture.  相似文献   

16.
Keeping MOM: Reaction of biphenyl-3,4',5-tricarboxylate and Cd(NO(3) )(2) in the presence of meso-tetra(N-methyl-4-pyridyl)porphine tetratosylate afforded porph@MOM-11, a microporous metal-organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M(+) Cl(-) ) in a stoichiometric fashion.  相似文献   

17.
18.
Numerous literature data indicate that the mean heat of adsorption of a monolayer of N(2) (DeltaQ(N(2))) on ice or snow at 77.15 K, determined by volumetric methods, is highly variable, suggesting that ice surface properties strongly depend on its mode of formation and its thermal history. Less numerous data on CH(4) adsorption show smaller variations of DeltaQ(CH(4)). If such variations are real, the extrapolation to atmospheric chemistry models of adsorption parameters measured on laboratory-made ice may be unwarranted. We have measured CH(4) adsorption on variable amounts of a crushed ice sample, to show that when the total surface area of the sample is below a threshold value, DeltaQ(CH(4)) decreases. We identify the cause of this artifact as an error in the molar budget, because the temperature gradient in the tube connecting the introduction and expansion volumes is not taken into account. Performing an adequate molar budget suppresses this artifact, except for ice samples with very small total surface areas, where the resolution of the manometer becomes a limiting factor and a further decrease in DeltaQ(CH(4)) is observed. Error in DeltaQ(gas) results in large errors in surface area, and we suggest that the value of DeltaQ(gas) obtained can be used to test the reliability of the surface area measurement. Copyright 2000 Academic Press.  相似文献   

19.
Zirconium-metal organic frameworks (Zr-MOFs) were synthesized with or without ammonium hydroxide as an additive in the synthesis process. It was found that addition of ammonium hydroxide would change the textural structure of Zr-MOF. The BET surface area, pore volume, and crystal size of Zr-MOF were reduced after addition of ammonium hydroxide. However, the crystalline structure and thermal stability were maintained and no functional groups were formed. Adsorption tests showed that Zr-MOF presented much higher CO(2) adsorption than CH(4). Zr-MOF exhibited CO(2) and CH(4) adsorption of 8.1 and 3.6 mmol/g, respectively, at 273 K, 988 kPa. The addition of ammonium hydroxide resulted in the Zr-MOF with a slight lower adsorption of CO(2) and CH(4), however, the selectivity of CO(2)/CH(4) is significantly enhanced.  相似文献   

20.
Experimental measurements and molecular simulations were conducted for two zeolitic imidazolate frameworks, ZIF‐8 and ZIF‐76. The transferability of the force field was tested by comparing molecular simulation results of gas adsorption with experimental data available in the literature for other ZIF materials (ZIF‐69). Owing to the good agreement observed between simulation and experimental data, the simulation results can be used to identify preferential adsorption sites, which are located close to the organic linkers. Topological mapping of the potential‐energy surfaces makes it possible to relate the preferential adsorption sites, Henry constant, and isosteric heats of adsorption at zero coverage to the nature of the host–guest interactions and the chemical nature of the organic linker. The role played by the topology of the solid and the organic linkers, instead of the metal sites, upon gas adsorption on zeolite‐like metal–organic frameworks is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号