首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated theoretically the interaction between methylamine (CH(3)NH(2)) and carbon dioxide (CO(2)) in the presence of water (H(2)O) molecules thus simulating the geometries of various methylamine-carbon dioxide complexes (CH(3)NH(2)/CO(2)) relevant to the chemical processing of icy grains in the interstellar medium (ISM). Two approaches were followed. In the amorphous water phase approach, structures of methylamine-carbon dioxide-water [CH(3)NH(2)/CO(2)/(H(2)O)(n)] clusters (n = 0-20) were studied using density functional theory (DFT). In the crystalline water approach, we simulated methylamine and carbon dioxide interactions on a fragment of the crystalline water ice surface in the presence of additional water molecules in the CH(3)NH(2)/CO(2) environment using DFT and effective fragment potentials (EFP). Both the geometry optimization and vibrational frequency analysis results obtained from these two approaches suggested that the surrounding water molecules which form hydrogen bonds with the CH(3)NH(2)/CO(2) complex draw the carbon dioxide closer to the methylamine. This enables, when two or more water molecules are present, an electron transfer from methylamine to carbon dioxide to form the methylcarbamic acid zwitterion, CH(3)NH(2)(+)CO(2)(-), in which the carbon dioxide is bent. Our calculations show that the zwitterion is formed without involving any electronic excitation on the ground state surface; this structure is only stable in the presence of water, i.e. in a methyl amine-carbon dioxide-water ice. Notably, in the vibrational frequency calculations on the methylcarbamic acid zwitterion and two water molecules we find the carbon dioxide asymmetric stretch is drastically red shifted by 435 cm(-1) to 1989 cm(-1) and the carbon dioxide symmetric stretch becomes strongly infrared active. We discuss how the methylcarbamic acid zwitterion CH(3)NH(2)(+)CO(2)(-) might be experimentally and astronomically identified by its asymmetric CO(2) stretching mode using infrared spectroscopy.  相似文献   

2.
It is shown that a linear correlation exists between nuclear shielding constants for nine small inorganic and organic molecules (N(2), CO, CO(2), NH(3), CH(4), C(2)H(2), C(2)H(4), C(2)H(6) and C(6)H(6)) calculated with 47 methods (42 DFT methods, RHF, MP2, SOPPA, SOPPA(CCSD), CCSD(T)) and the aug-cc-pVTZ-J basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets. This implies that the remaining basis set error of the aug-cc-pVTZ-J basis set is very similar in DFT and CCSD(T) calculations. As the aug-cc-pVTZ-J basis set is significantly smaller, CCSD(T)/aug-cc-pVTZ-J calculations allow in combination with affordable DFT/pcS-n complete basis set calculations the prediction of nuclear shieldings at the CCSD(T) level of nearly similar accuracy as those, obtained by fitting results obtained from computationally demanding pcS-n calculations at the CCSD(T) limit. A significant saving of computational efforts can thus be achieved by scaling inexpensive CCSD(T)/aug-cc-pVTZ-J calculations of nuclear isotropic shieldings with affordable DFT complete basis set limit corrections.  相似文献   

3.
A prediction of the formation constants (log K1) for complexes of metal ions with a single NH3 ligand in aqueous solution, using quantum mechanical calculations, is reported. DeltaG values at 298 K in the gas phase for eq 1 (DeltaG(DFT)) were calculated for 34 metal ions using density functional theory (DFT), with the expectation that these would correlate with the free energy of complex formation in aqueous solution (DeltaG(aq)). [M(H2O)6]n+(g) + NH(3)(g) = [M(H2O)5NH3]n+(g) + H2O(g) (eq 1). The DeltaG(aq) values include the effects of complex changes in solvation on complex formation, which are not included in eq 1. It was anticipated that such changes in solvation would be constant or vary systematically with changes in the log K(1) value for different metal ions; therefore, simple correlations between DeltaG(DFT) and DeltaG(aq) were sought. The bulk of the log K1(NH3) values used to calculate DeltaG(aq) were not experimental, but estimated previously (Hancock 1978, 1980) from a variety of empirical correlations. Separate linear correlations between DeltaG(DFT) and DeltaG(aq) for metal ions of different charges (M2+, M3+, and M4+) were found. In plots of DeltaG(DFT) versus DeltaG(aq), the slopes ranged from 2.201 for M2+ ions down to 1.076 for M4+ ions, with intercepts increasing from M2+ to M4+ ions. Two separate correlations occurred for the M3+ ions, which appeared to correspond to small metal ions with a coordination number (CN) of 6 and to large metal ions with a higher CN in the vicinity of 7-9. The good correlation coefficients (R) in the range of 0.97-0.99 for all these separate correlations suggest that the approach used here may be the basis for future predictions of aqueous phase chemistry that would otherwise be experimentally inaccessible. Thus, the log K1(NH3) value for the transuranic Lr3+, which has a half-life of 3.6 h in its most stable isotope, is predicted to be 1.46. These calculations should also lead to a greater insight into the factors governing complex formation in aqueous solution. All of the above DFT calculations involved corrections for scalar relativistic effects (RE). Au has been described (Koltsoyannis 1997) as a "relativistic element". The chief effect of RE for group 11 ions is to favor linear coordination geometry and greatly increase covalence in the M-L bond. The correlation for M+ ions (H+, Cu+, Ag+, Au+) involved the preferred linear coordination of the [M(H2O)2]+ complexes, so that the DFT calculations of DeltaG for the gas-phase reaction in eq 2 were carried out for M = H+, Cu+, Ag+, and Au+. [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (eq 2). Additional DFT calculations for eq 2 were carried out omitting corrections for RE. These indicated, in the absence of RE, virtually no change in the log K1(NH3) value for H+, a small decrease for Cu+, and a larger decrease for Ag+. There would, however, be a very large decrease in the log K1(NH3) value for Au(I) from 9.8 (RE included) to 1.6 (RE omitted). These results suggest that much of "soft" acid behavior in aqueous solution in the hard and soft acid-base classification of Pearson may be the result of RE in the elements close to Au in the periodic table.  相似文献   

4.
Bond dissociation energies (BDEs) for complexes of ground state Mg+ (2S) with several small oxygen- and nitrogen-containing ligands (H2O, CO, CO2, H2CO, CH3OH, HCOOH, H2CCO, CH3CHO, c-C2H4O, H2CCHOH, CH3CH2OH, CH3OCH3, NH3, HCN, H2CNH, CH3NH2, CH3CN, CH3CH2NH2, (CH3)2NH, H2NCN, and HCONH2) have been calculated at the CP-dG2thaw level of theory. These BDE values, as well as counterpoise-corrected MP2(thaw)/6-311+G(2df,p) calculations on the Mg+ complexes of several larger ligands, augment and complement existing experimental or theoretical determinations of gas-phase Mg+/ligand bond strengths. The reaction kinetics of complex formation are also investigated via variational transition state theory (VTST) calculations using the computed ligand and molecular ion parameters. Radiative association rate coefficients for most of these systems increase by approximately 1 order of magnitude with every 3-fold reduction in temperature from 300 to 10 K. Several of the largest molecules surveyed-notably, CH3COOH, (CH3)2CO, and CH3CH2CN-exhibit comparatively efficient radiative association with Mg+ (k(RA) > or = 1.0 x 10(-10) cm3 molecule(-1) s(-1)) at temperatures as high as 100 K, implying that these processes may have a considerable influence on the metal ion chemistry of warm molecular astrophysical environments known to contain these potential ligands. Our calculations also identify the infrared chromophoric brightness of various functional groups as a significant factor influencing the efficiency of the radiative association process.  相似文献   

5.
The mechanism of the noncatalyzed and reagent-catalyzed Bazarov synthesis of urea has extensively been investigated in the gas phase by means of density functional (B3LYP/6-31G(d,p)) and high quality ab initio (CBS-QB3) computational techniques. It was found that the first step of urea formation from NH3(g) and CO2(g) corresponds to a simple addition reaction leading to the carbamic acid intermediate, a process being slightly endothermic. Among the three possible reaction mechanisms considered, the addition-elimination-addition (AEA) and the double addition-elimination (DAE) mechanisms are almost equally favored, while the concerted (C) one was predicted kinetically forbidden. The second step involves the formation of loose adducts between NH3 and carbamic acid corresponding to an ammonium carbamate intermediate, which subsequently dehydrates to urea. The formation of "ammonium carbamate" corresponds to an almost thermoneutral process, whereas its dehydration, which is the rate-determining step, is highly endothermic. The Bazarov synthesis of urea is strongly assisted by the active participation of extra NH3 or H2O molecules (autocatalysis). For all reaction pathways studied the entire geometric and energetic profiles were computed and thoroughly analyzed. The reaction scheme described herein can be related with the formation of both isocyanic acid, H-N=C=O, and carbamic acid, H2N-COOH, as key intermediates in the initial formation of organic molecules, such as urea, under prebiotic conditions.  相似文献   

6.
In several recent studies Schrock and collaborators demonstrated for the first time how molecular dinitrogen can be catalytically transformed under mild and ambient conditions to ammonia by a molybdenum triamidoamine complex. In this work, we investigate the geometrical and electronic structures involved in this process of dinitrogen activation with quantum chemical methods. Density functional theory (DFT) has been employed to calculate the coordination energies of ammonia and dinitrogen relevant for the dissociation/association step in which ammonia is substituted by dinitrogen. In the DFT calculations the triamidoamine chelate ligand has been modeled by a systematic hierarchy of increasingly complex substituents at the amide nitrogen atoms. The most complex ligand considered is an experimentally known ligand with an HMT = 3,5-(2,4,6-Me3C6H2)2C6H3 substituent. Several assumptions by Schrock and collaborators on key reaction steps are confirmed by our calculations. Additional information is provided on many species not yet observed experimentally. Particular attention is paid to the role of the charge of the complexes. The investigation demonstrates that dinitrogen coordination is enhanced for the negatively charged metal fragment, that is, coordination is more favorable for the anionic metal fragment than for the neutral species. Coordination of N2 is least favorable for the cationic metal fragment. Furthermore, ammonia abstraction from the cationic complex is energetically unfavorable, while NH3 abstraction is less difficult from the neutral and easily feasible from the anionic low-spin complex.  相似文献   

7.
The ligand exchange mechanism of solvated lithium cations has been studied using DFT calculations (RB3LYP/6-311+G**). The water exchange mechanism on [Li(H(2)O)(4)](+) was found to be limiting associative (A) involving a five-coordinate intermediate, whereas ammonia exchange on [Li(NH(3))(4)](+) was found to follow an associative interchange (I(a)) mechanism. The suggested mechanisms are discussed in reference to available experimental and theoretical data.  相似文献   

8.
Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H(+), OH(-), NH(3), NH(4)(+), HCOOH, and HCOO(-) in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH(3) and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.  相似文献   

9.
键级守恒法研究甲酸在过渡金属上的分解机理   总被引:1,自引:0,他引:1  
用键级守恒-Morse势方法研究了甲酸在Ag(111)、Ni(111)和Fe/W(110)面上极低覆盖度及较高覆盖度下的分解机理。计算结果表明,在极低覆盖度下甲酸分解通过HCOO中间体进行,其分解能力依Ag相似文献   

10.
In this work we study hydrogen isotope fractionation along the proposed gas-phase ammonia formation pathway at temperatures relevant to interstellar modelling. Specifically we study the isotopically substituted variants of the NH(+) + H(2) reaction, for which the primary product is NH(2)(+) + H. Adiabatic capture theory calculations have been performed for the association reaction. A new potential-energy surface has been determined for the NH(2)(+) product. An extensive set of rovibrational energy levels has been calculated for the NH(2)(+) isotopologues described by this potential-energy surface. These rovibrational energy levels have been used to determine energy- and angular-momentum-resolved numbers of accessible product states from the NH(3)(+) isotopologue intermediates, which in turn have been averaged to give statistical branching fractions for all isotopically-substituted NH(+) + H(2) reactions. It is determined that in all cases where both hydrogen and deuterium are present, the NHD(+) product is preferred.  相似文献   

11.
Dust grains in the interstellar medium are known to serve as the first chemical laboratory where the rich inventory of interstellar molecules are synthesized. Here we present a study of the formation of hydroxylamine-NH(2)OH-via the non-energetic route NO + H (D) on crystalline H(2)O and amorphous silicate under conditions relevant to interstellar dense clouds. Formation of nitrous oxide (N(2)O) and water (H(2)O, D(2)O) is also observed and the reaction network is discussed. Hydroxylamine and water results are detected in temperature-programmed desorption (TPD) experiments, while N(2)O is detected by both reflection-absorption IR spectroscopy and TPD techniques. The solid state NO + H reaction channel proves to be a very efficient pathway to NH(2)OH formation in space and may be a potential starting point for prebiotic species in dark interstellar clouds. The present findings are an important step forward in understanding the inclusion of interstellar nitrogen into a non-volatile aminated species since NH(2)OH provides a solid state nitrogen reservoir along the whole evolutionary process of interstellar ices from dark clouds to planetary systems.  相似文献   

12.
Ionization processes of chlorobenzene-ammonia 1:1 complex (PhCl-NH3) have been investigated by means of full dimensional direct ab initio molecular dynamics (MD) method, static ab initio calculations, and density functional theory (DFT) calculations. The static ab initio and DFT calculations of neutral PhCl-NH3 complex showed that one of the hydrogen atoms of NH3 orients toward a carbon atom in the para-position of PhCl. The dynamics calculation for ionization of PhCl-NH3 indicated that two reaction channels are competitive with each other as product channels: one is an intramolecular SN2 reaction expressed by a reaction scheme [PhCl-NH3]+-->SN2 intermediate complex-->PhNH3++Cl, and the other is ortho-NH3 addition complex (ortho complex) in which NH3 attacks the ortho-carbon of PhCl+ and the trajectory leads to a bound complex expressed by (PhCl-NH3)+. The mechanism of the ionization of PhCl-NH3 is discussed on the basis of the theoretical results.  相似文献   

13.
High level ab initio calculations of the Rayleigh scattering activities of the hydrogen‐bonded dimers of formic acid (HCOOH), nitrosyl hydride (HNO), and hydrogen cyanide (HCN) molecules have been performed. All these molecules have already been detected in interstellar space and are of great importance from the astrochemical point of view. The geometries of the homo‐ and hetero‐dimers have been optimized using Hartree–Fock and second‐order Møller‐Plesset perturbation theory. Dipole moment, mean dipole polarizability, and polarizability anisotropy have been calculated utilizing Pople‐type 6‐311++G(d,p) and Dunning's aug‐cc‐pVDZ basis sets for all the complexes. The polarizabilities are then used to calculate and analyze the Rayleigh scattering parameters. The results for the dimers, HCN···HCN, HCOOH···HCOOH, HNO···HNO, HCN···HCOOH, HCN···HNO, and HNO···HCOOH are compared with those of the isolated molecules, HCN, HCOOH, and HNO to see the effect of hydrogen bond formation on the molecular interaction with radiation. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
15.
A series of original 2-indenylidene palladium pincer complexes {PdL[Ind(Ph(2)P==S)(2)]} (L = HNCy(2), PPh(3), Cl(-)) have been prepared by double C-H activation of a 1,3-bis(thiophosphinoyl)indene proligand. Crystallographic analyses and DFT calculations indicate that the bonding situation of the {Pd[Ind(Ph(2)P==S)(2)]} fragment is essentially governed by the conjugated and rigid nature of the dianionic pincer ligand, the nature of the coligand having little influence. The formation of the 2-indenylidene complexes involves either a 2-indenyl pincer or a four-membered cyclometalated complex as an intermediate, suggesting that C(sp(2))-H or C(sp(3))-H bond activation takes place. However, deuterium labelling experiences show that in all cases, C(sp(3))-H bond activation occurs followed eventually by a Pd/H exchange. Nevertheless, evidence for direct C(sp(2))-H bond activation under mild conditions is obtained when a methyl group is introduced at the indene proligand to prevent C(sp(3))-H bond activation. The ensuing dissymmetrical 2-indenyl palladium pincer complex has been fully characterized.  相似文献   

16.
A urea-based tripodal receptor L substituted with p-cyanophenyl groups has been studied for halide anions using (1)H NMR spectroscopy, density functional theory (DFT) calculations, and X-ray crystallography. The (1)H NMR titration studies suggest that the receptor forms a 1:1 complex with an anion, showing a binding trend in the order of fluoride > chloride > bromide > iodide. The interaction of a fluoride anion with the receptor was further confirmed by 2D NOESY and (19)F NMR spectroscopy in DMSO-d(6). DFT calculations indicate that the internal halide anion is held by six NH···X interactions with L, showing the highest binding energy for the fluoride complex. Structural characterization of the chloride, bromide, and silicon hexafluoride complexes of [LH(+)] reveals that the anion is externally located via hydrogen bonding interactions. For the bromide or chloride complex, two anions are bridged with two receptors to form a centrosymmetric dimer, while for the silicon hexafluoride complex, the anion is located within a cage formed by six ligands and two water molecules.  相似文献   

17.
The copper(II) complexes 1(H) and 1(Ar(X)), supported by the N,N-di(2-pyridylmethyl)benzylamine tridentate ligand (L(H)) or its derivatives having m-substituted phenyl group at the 6-position of pyridine donor groups (L(Ar(X))), have been prepared, and their reactivity toward H2O2 has been examined in detail at low temperature. Both copper(II) complexes exhibited a novel reactivity in acetone, giving 2-hydroxy-2-hydroperoxypropane (HHPP) adducts 2(H) and 2(Ar(X)), respectively. From 2(Ar(X)), an efficient aromatic ligand hydroxylation took place to give phenolate-copper(II) complexes 4(Ar(X)). Detailed spectroscopic and kinetic analyses have revealed that the reaction proceeds via an electrophilic aromatic substitution mechanism involving copper(II)-carbocation intermediates 3(Ar(X)). Theoretical studies at the density functional theory (DFT) level have strongly implicated conjugate acid/base catalysis in the O-O bond cleavage and C-O bond formation steps that take the peroxo intermediate 2(Ar(X)) to the carbocation intermediate 3(Ar(X)). In contrast to the 2(Ar(X)) cases, the HHPP-adduct 2(H) reacted to give a copper(II)-acetate complex [Cu(II)(L(H))(OAc)](ClO4) (6(H)), in which one of the oxygen atoms of the acetate co-ligand originated from H2O2. In this case, a mechanism involving a Baeyer-Villiger type 1,2-methyl shift from the HHPP-adduct and subsequent ester hydrolysis has been proposed on the basis of DFT calculations; conjugate acid/base catalysis is implicated in the 1,2-methyl shift process as well. In propionitrile, both 1(H) and 1(Ar(X)) afforded simple copper(II)-hydroperoxo complexes LCu(II)-OOH in the reaction with H2O2, demonstrating the significant solvent effect on the reaction between copper(II) complexes and H2O2.  相似文献   

18.
Hydroxylamine (NH(2)OH) is one of the potential precursors of complex pre-biotic species in space. Here, we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. A complex reaction network involving both final (N(2)O, NH(2)OH) and intermediate (HNO, NH(2)O[middle dot], etc.) products is discussed. The main conclusion is that hydroxyl-amine formation takes place via a fast and barrierless mechanism and it is found to be even more abundantly formed in a water-rich environment at lower temperatures. In parallel, we experimentally verify the non-formation of hydroxylamine upon UV photolysis of NO ice at cryogenic temperatures as well as the non-detection of NC- and NCO-bond bearing species after UV processing of NO in carbon monoxide-rich ices. Our results are implemented into an astrochemical reaction model, which shows that NH(2)OH is abundant in the solid phase under dark molecular cloud conditions. Once NH(2)OH desorbs from the ice grains, it becomes available to form more complex species (e.g., glycine and β-alanine) in gas phase reaction schemes.  相似文献   

19.
The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate deltaH(o) and deltaG(o) values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4(+) (NH3)n and NH4(+) (H2O)n, where n = 1-4, are reported in this paper and compared against experimental values. Agreement with the experimental values for deltaH(o) and deltaG(o) for formation of NH4(+) (NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4(+) (H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.  相似文献   

20.
The mechanism of Pt(II)-catalyzed intramolecular cycloisomerization of allenyne systems has been extensively investigated by DFT calculations. Different mechanistic schemes have been proposed and discussed, including the Alder-ene reaction. The free energy results suggest that the kinetically preferred reaction pathway for precursors that are tri- and tetrasubstituted on the allene moiety should proceed by a five-step mechanism. This would involve formation of a platina(IV)cyclopentene intermediate by selective engagement of the external pi bond of the allene, which would undergo regioselective beta-H elimination from the equatorially disposed methyl group. A metal-induced H migration leads to a second octahedral Pt(IV)-chelate complex, which would yield the expected bicyclic system through an intramolecular migratory insertion step. Therefore, depending on the conformation of the initial eta(4)-reactant complex for trisubstituted patterns, two possible intermediates can be formed that would evolve through different paths. In these cases, the regio- and stereochemical outcomes predicted by the mechanistic scheme proposed agree with experimental data. Substituted precursors on the alkyne moiety follow a distinct, four-step, mechanism also involving an oxidative cyclometalation process to an octahedral Pt(IV) intermediate complex. Theoretical results reveal the kinetic preference for beta-H elimination from the allylic group rather than from the gem-dimethyl group, which should account for the observed regioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号