首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The temperature dependence of the 1 H NMR resonance of the C‐4 olefinic proton in vinylcyclopropane was investigated through a combination of ab initio calculations and Boltzmann statistics. A torsional energy profile as a function of the 〈?〉 dihedral angle was obtained using HF methodology with a 6–311G** basis set, while the corresponding 1 H chemical shift profiles for the C‐4 proton were computed using the GIAO approach and either HF, DFT (B3LYP) or MP2 methods at the 6–311G** level of theory. Chemical shifts at different temperatures calculated as canonical ensemble averages in which the different ab initio 1 H chemical shift profiles and a Boltzmann factor defined by the HF/ 6–311G** energy function are employed reproduce remarkably well the temperature dependence observed experimentally. Attempts to perform a similar study using only the GIAO‐MP2 1 H chemical shift profile and 〈?〉 dihedral angle trajectories obtained from molecular dynamics simulations at different temperatures failed to reproduce the experimental trends. This shortcoming was attributed to the inability of the force fields employed, Tripos 6.0 and MMFF94, to reproduce properly the three‐well torsional potential of vinylcyclopropane. The application of both methodologies to the calculation of population‐dependent chemical shifts in other systems is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Conformationally rigid systems such as xylopyranose 1,2,4-ortho esters ( 1a ) and ( 1b ) and 10-methoxy-6-aza-isoadamantane ( 2 ), for which the identity of conformations both in the crystalline state and in solution can reasonably be assumed, provide good models for the study of experimental correlations between the spin–spin coupling constants (J) of the vicinal protons and the dihedral bond angles (DBA) determined from an X-ray study in the H? C? C? H bond system. The Karplus equations and their modifications (with and without corrections for the electronegativity of adjacent groups) were found to be unable to provide satisfactory correlations between these parameters. Optimum coefficients for the equations connecting the J and DBA values with corrections for electronegativity were calculated by the least squares method. The same procedure was used to obtain an equation connecting the J with DBA values using the sum of the chemical shifts as a measure of the electronic factors affecting the J ∝ DBA dependence. The accuracy of the equation thus obtained lies within ±18% as opposed to ±48% for the original Karplus equations. A similar correlation was obtained for the angles between the intercrossing lines formed by the directions of the vicinal C? H bonds (ILA). When combined with the sum of chemical shifts, ILA provides a better correlation with the coupling constants J than the conventional parameter DBA.  相似文献   

3.
The dihedral and bond direction angles between all pairs of vicinal protons of the arabinofuranose residue were calculated from the coordinatees of the hydrogen atoms found by an X-ray study of 3-O-acetyl-β-L -arabinofuranose 1,2,5-orthobenzoate. The values found were compared with those calculated with the help of correlation equations previously proposed by Karplus and recently by the authors, linking the values of those angles with the spin-spin coupling constants of vicinal protons [3J(H,H′)]. It has been found that the best agreement between the angles found crystallographically and calculated from the 1H NMR data can be achieved using the equation which includes bond direction angles and the sum of the chemical shifts of the protons involved.  相似文献   

4.
The direct molecular structure implementations of the gage-including atomic orbital (GIAO), individual gages for atoms in molecules (IGAIM) and continuous set of gage transformations (CSGT) methods for calculating nuclear magnetic shielding tensors at both the Hartree-Fock (HF) and density functional (B3LYP) levels of theory with 6-31G(d), 6-311G(d), 6-31++G(d,p), 6-311++G(d,p), and 6-311++G(df,pd) basis sets are presented. Dependence on the 1H and 13C NMR chemical shifts on the choice of method and basis set have been investigated. Also, these chemical shifts of 2-aryl-1,3,4-oxadiazoles 5a–g have been performed related to dihedral angles (C4–C3–C2–O) of two conformers. The optimized molecular geometries and 1H and 13C chemical shift values of 2-aryl-1,3,4-oxadiazoles 5a–g in the ground state have been obtained. The linear correlation coefficients of 13C NMR chemical shifts for these molecules were given. The new nuclear magnetic shielding tensors of tetramethylsilane (TMS) were calculated. The data of 2-aryl-1,3,4-oxadiazole derivatives display significant molecular structure and NMR analysis. Also, these provide the basis for future design of efficient materials having the 1,3,4-oxadiazole core.  相似文献   

5.
As is well‐known, the C2?H proton of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([Emim]BF4) and 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim]BF4) has a strong ability to form hydrogen bonds. The purpose of this work is to evaluate the effect of the interactions of the C4?H and C5?H protons on the microstructure of [Emim]BF4 and [Bmim]BF4 with water by using 1H NMR spectroscopy. The differences between the relative 1H NMR chemical shifts of C2?H, C4?H, and C5?H and between the interaction‐energy parameters obtained from these chemical shifts are minor, thus suggesting that the interactions of C4?H and C5?H may have a considerable effect on the microstructure. To confirm this, the viscosities of the systems are estimated by using the interaction‐energy parameters obtained from the 1H NMR chemical shifts of the three studied aromatic protons and water, showing that the interactions of C4?H and C5?H also play an important role in the microstructure.  相似文献   

6.
In this study, diethyl 2-(ter-butylimino)-2,5-dihydro-5-oxo-1-phenyl-1H-pyrrole-3,4-dicarboxylate compound 1 is synthesized and characterized by FT-IR, 1H and 13C NMR spectroscopy. The DFT calculations are carried out for compound 1 by B3LYP and PBE1PBE methods. The bond lengths, bond angles, dihedral angles, charge density on the atoms of 1 are calculated. A comparison of the DFT calculations indicate that the B3LYP method with the 6-311G++(d,p) basis set can give accurate results. The 13C NMR and 1H NMR chemical shifts of 1 are calculated and compared with the available experimental data on the molecules. The nuclear independent chemical shift (NICS) calculations are utilized for the pyrrole ring in compound 1.  相似文献   

7.
13C n.m.r. chemical shifts of a number of 1,1-disubstituted ethylenes are presented. Moreover, effects of changing temperatures on the 13C n.m.r. chemical shifts of some of these compounds as well as of three normal alkanes are given. These variations in chemical shifts are attributed to varying amounts of sterically induced shifts in the different conformational equilibria. In addition to the well-known 1,4 interaction between two alkyl groups shielding effects on the carbon atoms of the connecting bonds are also proposed. No definite explanation of this effect is presented at this time. It is further shown that no simple correlations exist between 13C n.m.r. chemical shifts and calculated total charge densities at this level. Instead, the experimental results in 1-alkenes are rationalized by assuming a linear dependence of the 13C n.m.r. chemical shifts of C-1 and C-2 via rehybridizations on changes in bond angles for small skeletal deformations caused by steric interactions. These changes in geometries, as well as conformational energies in three 1-alkenes, were calculated by means of VFF calculations. Finally. upfield shifts for both C-2 and C-4 are proposed for those conformations of 1-alkenes in which the C-3? C-4 group interacts with the pz-orbital of C-2.  相似文献   

8.
The diastereomers of 16 1,3-oxa-, 1,3-aza- and 1,3- thiaphospholanes were assigned by means of the coupling constants 2J(P? C? H) and 3J(P? C? CH3) and the linewidths of the 31P signals and 1H chemical shifts of CH3 groups. It is shown that the change in the 31P chemical shifts allows the estimation of the relative configuration in these compounds.  相似文献   

9.

New substituted stilbenes have been prepared by reactions of (E)-4-stilbenethiole with dibromoalkanes. 1H and 13C NMR spectra of new compounds have been assigned unambiguously on the basis of a combination of homo- (1H?1H COSY) and heteronuclear (1 H?13C COSY-HETCOR) two-dimensional methods, chemical shifts, and spin-coupling constants.  相似文献   

10.
Carbon-13 chemical shifts and 13C-1H coupling constants of 3-substituted 4-hydroxycoumarins and 4-hydroxy-7-methoxycoumarins are determined. A three-parameter correlation with ? and ? of Swain and Lupton and Q of Schaefer applied to these compounds provides linear relationships for the prediction of chemical shifts from substituent parameters.  相似文献   

11.
The measurement of the magnitude and sign of 2J(C,H) couplings offers a reliable way to determine the absolute configuration at a carbon center in a fixed cyclic system. A decrease of the dihedral angle ? in the O—CA—CB—H fragment always leads to a change of the 2J(CA,HB) coupling to more negative values, independent of the type and position of substituents at the two carbon centers. The orientations of the two substituents at C‐3 of the epimeric pair 1 and 2 were determined unambiguously through the measurement of the geminal coupling constants between C‐3 and the hydrogen atoms at C‐2 and C‐4. In particular, 2J(C‐3,H‐2ax) with ?1.5 Hz, ? = 174° in 1 and ?6.6 Hz, ? = 47° in 2 , and 2J(C‐3,H‐4) with +1.5 Hz, ? = 175° in 1 and ?4.7 Hz, ? = 49° in 2 showed the greatest differences between the two epimers. Both couplings therefore allow the determination of the absolute configuration at C‐3. It should be noted, however, that the size of the coupling constants can be different for dihedral angles of nearly identical size, when there are different numbers of electronegative substituents on the two coupling pathways, i.e. no O‐substituent at C‐2, but one axial O‐substituent at C‐4. It becomes clear that it is not sufficient to measure the magnitude of 2J coupling constants only, but that the sign of the geminal coupling is needed to identify the absolute configuration at a chiral center. The coupling of C‐3 with H‐2eq is not useful for the determination of the configuration at C‐3, as the similarity of the dihedral angles ? (O—C‐3—C‐2—H‐2eq) (57° in 1 and 70° in 2 ) leads to identical coupling constants (?6.1 Hz) for both epimers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Proton coupled 13C NMR spectra have been recorded for some acylphloroglucinol derivatives. Significant couplings over two, three and four bonds were observed between the hydroxyl proton and aromatic carbons for those compounds where the hydroxyl group is hydrogen bonded strongly enough to the carbonyl carbon of the acyl side chain. Typical values were 2J = 4.8 Hz, and 3J = 5.6 Hz or 6.7 Hz corresponding to dihedral angles of c. 0° and c. 180°, respectively; the dihedral angle is defined as the angle between the O—H bond and the plane of the aromatic ring. A stereospecific 4J(COH) value of 1.2 Hz for a ‘W’ arrangement of coupled atoms was also found. An interesting example of ‘virtual’ J(CH) coupling was observed in the proton coupled spectrum of 1-butyrylphloroglucinol 2-monomethyl ether in acetone-d6 caused by the accidentally equal chemical shifts of the two ring protons.  相似文献   

13.
The 1H and 13C NMR spectra of d-biotin were observed at 400 and 100 MHz, respectively. Various types of two-dimensional NMR spectroscopy were performed to assign the spectra. The previous assignment of 13C NMR spectrum of d-biotin reported by Bradbury and Johnson was modified, and the dihedral angles between the C? H bonds of the ring were determined. The populations of the conformers produced by internal rotation around the C-2? C-δ bond were estimated.  相似文献   

14.
The complete 1H and 13C NMR assignments for 3,6-epoxypentacyclo[6.2.2.02,7.04,10.05,9]dodecane and 3,6-epoxypentacyclo[6.2.1.02,7.04,10.05,9]undecane are reported. The difference between the 1H and 13C chemical shifts and one-bond proton-carbon coupling constants of these two compounds are adequately explained by the difference in the hybridization of the C? H bonds.  相似文献   

15.
Proton and 13C NMR data are presented for six different compounds containing the fragment C6H5? C? CH2SiMe3. In a number of instances it was observed that, in the 1H NMR spectrum, the SiMe3 groups had a chemical shift significantly upfield from internal tetramethylsilane (δ = ?0·14 to ?0·36). These unexpected upfield chemical shifts of the SiMe3 groups are suggested to result from the predominance, on a time averaged basis, of conformations which place the methyl groups attached to silicon in the face of an aromatic ring. The preference for such conformations is, in turn, the result of rotational preferences exhibited by the ‘flat’ aromatic ring. These results suggest that conformational analysis of systems containing a phenyl ring should take more explicit account of the fact that the preferred orientation of this phenyl ring can have a profound influence on the conformation adopted by the remainder of the molecule. In addition, the preferred conformation of the phenyl ring can have a significant effect upon the observed 1H NMR chemical shifts, while the 13C chemical shifts are relatively insensitive to conformational factors and can be explained by well-known substituent effects previously delineated for all-carbon systems.  相似文献   

16.
The 1H and 13C NMR resonances of 16 purine glucosides were assigned by a combination of one‐ and two‐dimensional NMR experiments, including gs‐COSY, gs‐HSQC, and gs‐HMBC, in order to characterize the effect of substituent and the position of glucose unit on the NMR chemical shifts. In addition, 15N NMR chemical shifts for selected derivatives were investigated by using 1H? 15N chemical shift correlation techniques. To map the influence of sugar moiety on the directly bonded nitrogen atom, selected N9‐glucosides and their ribose analogs were compared. Characteristic long‐range 1H? 15N coupling constants, measured by using 1H? 15N gradient‐selected single‐quantum multiple bond correlation (GSQMBC), are also reported and discussed. All compounds investigated here belong to cytokinins, an important group of plant hormones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
1H, 2H and 13C NMR studies of cyclobutene and a series of isotopically enriched species have led to a determination of the 1H? 1H, 13C? 1H, 13C? 2H and 13C? 13C coupling constants in these compounds. In agreement with general observations, 1J(CH) is found to depend on the hybridization of the carbon atoms. Likewise, 2J(HH), 2J(CC), 3J(HH) and 3J(CH), but not 2J(CH), depend on the angles between the bonds connecting the coupled nuclei. When comparing cyclobutene with thiete 1,1-dioxide (thiete sulphone) an increase of almost 20 Hz is observed for 1J(C-2, H-2) in the latter compound. All but one of the observed deuterium isotope effects on chemical shifts are negative. In the case of isotope effects upon the one-bond coupling constants, the obtained values support the results of the theoretical calculations of Sergeev and Solkan.  相似文献   

18.
Five new thiophenoxyketinimines have been synthesized. 1H and 13C NMR spectra as well as deuterium isotope effects on 13C chemical shifts are determined, and spectra are assigned. DFT and MP2 calculations of both structures, chemical shifts, and isotope effects on chemical shifts are done. The combined analysis reveals that the compounds are primarily on a zwitterionic form with an NH+ and a S group and with a little of the neutral form mixed in. Very strong intramolecular hydrogen bonding is found and very high NH chemical shifts are observed. The theoretical calculations show that calculations at the MP2 level are best to obtain correct “C═S” chemical shifts.  相似文献   

19.
The 1H and 13C NMR spectra of 9,10-dihydroanthracene have been obtained at 2.1 and 9.4 T using selective decoupling of the methylene protons. Complete spectral analyses of the experimental spectra have provided the chemical shifts and coupling constants. The 13C? 1H coupling constants in 9, 10-dihydroanthracene and biphenylene have been well accounted for by MNDO theoretical calculations of the molecular geometries and bond orders in these compounds.  相似文献   

20.
Vinylation and 91Zr N.M.R. Spectra of substituted Zirconocene Dichlorides Substituted zirconocene dichlorides react with vinyl lithium with formation of zirconacyclopent-2-enes, Cp2ZrCH = CHCH2CH2, or zirconocene butadiene complexes, Cp2Zr(C4H6). The compounds obtained were characterized by their 1H and 13C n.m.r. spectra. The 91Zr n.m.r. chemical shifts of substituted zirconocene dichlorides correlate with the bond angles Cp′? Zr? Cp′ and Cl? Zr? Cl respectively. They can be used to estimate the reaction behaviour of zirconocene dichlorides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号