首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binuclear phosphine complex [Fe(2)Cp(2)(μ-CO)(2)(CO)(PH(2)Ph)] (Cp = η(5)-C(5)H(5)) reacted with the acetonitrile adduct [Fe(2)Cp(2)(μ-CO)(2)(CO)(NCMe)] in dichloromethane at 293 K to give the trinuclear hydride-phosphinidene derivative [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(CO)(4)] as a mixture of cis,anti and trans isomers (Fe-Fe = 2.7217(6) ? for the cis,anti isomer). In contrast, photochemical treatment of the phosphine complex with [Fe(2)Cp(2)(CO)(4)] gave the phosphide-bridged complex trans-[Fe(3)Cp(3)(μ-PHPh)(μ-CO)(2)(CO)(3)] as the major product, along with small amounts of the binuclear hydride-phosphide complexes [Fe(2)Cp(2)(μ-H)(μ-PHPh)(CO)(2)] (cis and trans isomers), which are more selectively prepared from [Fe(2)Cp(2)(CO)(4)] and PH(2)Ph at 388 K. The photochemical decarbonylation of either of the mentioned triiron compounds led reversibly to three different products depending on the reaction conditions: (a) the 48-electron phosphinidene cluster [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(μ-CO)(2)] (Fe-Fe = 2.592(2)-2.718(2) ?); (b) the 50-electron complex [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(μ-CO)(CO)(2)], also having carbonyl- and hydride-bridged metal-metal bonds (Fe-Fe = 2.6177(3) and 2.7611(4) ?, respectively); and (c) the 48-electron phosphide cluster [Fe(3)Cp(3)(μ-PHPh)(μ(3)-CO)(μ-CO)(2)], an isomer of the latter phosphinidene complex now having three intermetallic bonds (Fe-Fe = 2.5332(8)-2.6158(8) ?).  相似文献   

2.
The treatment of [{Rh(μ-SH){P(OPh)(3)}(2)}(2)] with [{M(μ-Cl)(diolef)}(2)] (diolef=diolefin) in the presence of NEt(3) affords the hydrido-sulfido clusters [Rh(3)(μ-H)(μ(3)-S)(2)(diolef){P(OPh)(3)}(4)] (diolef=1,5-cyclooctadiene (cod) for 1, 2,5-norbornadiene (nbd) for 2, and tetrafluorobenzo[5,6]bicyclo[2.2.2]octa-2,5,7-triene (tfb) for 3) and [Rh(2)Ir(μ-H)(μ(3)-S)(2)(cod){P(OPh)(3)}(4)] (4). Cluster 1 can be also obtained by treating [{Rh(μ-SH){P(OPh)(3)}(2)}(2)] with [{Rh(μ-OMe)(cod)}(2)], although the main product of the reaction with [{Ir(μ-OMe)(cod)}(2)] was [RhIr(2)(μ-H)(μ(3)-S)(2)(cod)(2){P(OPh)(3)}(2)] (5). The molecular structures of clusters 1 and 4 have been determined by X-ray diffraction methods. The deprotonation of a hydrosulfido ligand in [{Rh(μ-SH)(CO)(PPh(3))}(2)] by [M(acac)(diolef)] (acac=acetylacetonate) results in the formation of hydrido-sulfido clusters [Rh(3)(μ-H)(μ(3)-S)(2)(CO)(2) (diolef)(PPh(3))(2)] (diolef=cod for 6, nbd for 7) and [Rh(2)Ir(μ-H)(μ(3)-S)(2)(CO)(2)(cod)(PPh(3))(2)] (8). Clusters 1-3 and 5 exist in solution as two interconverting isomers with the bridging hydride ligand at different edges. Cluster 8 exists as three isomers that arise from the disposition of the PPh(3) ligands in the cluster (cis and trans) and the location of the hydride ligand. The dynamic behaviour of clusters with bulky triphenylphosphite ligands, which involves hydrogen migration from rhodium to sulfur with a switch from hydride to proton character, is significant to understand hydrogen diffusion on the surface of metal sulfide hydrotreating catalysts.  相似文献   

3.
The title complex (Cp = η(5)-C(5)H(5)) reacted with the labile carbonyl complexes [M(CO)(5)(THF)] (M = Cr, Mo, W) and [MnCp'(CO)(2)(THF)] (Cp' = η(5)-C(5)H(4)Me) to give phosphinidene-bridged trimetallic compounds of formula [Fe(2)MCp(2)(μ(3)-PCy)(μ-CO)(CO)(7)] (Cr-P = 2.479(1) ?) and [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(CO)(4)], respectively, after formation of a new M-P bond in each case, and related heterometallic complexes [Fe(2)MClCp(2)(μ(3)-PCy)(μ-CO)(CO)(2)] (M = Cu, Au; Au-P = 2.262(1) ?) were cleanly formed upon reaction with CuCl or the labile tetrahydrothiophene (THT) complex [AuCl(THT)]. The reaction with [Fe(2)(CO)(9)] proceeded analogously to give the triiron derivative [Fe(3)Cp(2)(μ(3)-PCy)(μ-CO)(CO)(6)] in high yield (new Fe-P bond =2.318(1) ?), along with a small amount of the pentanuclear compound [{Fe(CO)(3)}{(μ(3)-PCy)Fe(2)Cp(2)(μ-CO)(CO)(2)}(2)], the latter displaying a central Fe(CO)(3)P(2) core with a distorted bipyramidal geometry (P-Fe-P = 164.2(1)°). In contrast, the reaction with [Co(2)(CO)(8)] resulted in a full disproportionation process to give the salt [{Co(CO)(3)}{(μ(3)-PCy)Fe(2)Cp(2)(μ-CO)(CO)(2)}(2)][Co(CO)(4)], having a pentanuclear Fe(4)Co cation comparable to the above Fe(5) complex (P-Co-P = 165.3(2)°). The attempted photochemical decarbonylation of the above trinuclear complexes gave results strongly dependent on the added metal fragment. Thus, the irradiation with visible or visible-UV light of the new Fe(3) and Fe(2)Cr species caused no decarbonylation but a tautomerization of the metal framework to give the corresponding isomers [Fe(2)MCp(2)(μ(3)-PCy)(μ-CO)(CO)(n)] now exhibiting a dangling FeCp(CO)(2) moiety (M = Cr, n = 7, Cr-Fe = 2.7370(3) ?; M = Fe, n = 6, new Fe-Fe bond = 2.6092(9) ?) as a result of the cleavage of the Fe-Fe bond in the precursor and subsequent formation of a new M-Fe bond. These processes are reversible, since the new isomers gave back the starting complexes under low (Cr) or moderate (Fe) thermal activation. In contrast, the manganese-diiron complex [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(CO)(4)] could be decarbonylated stepwise, to give first the tetracarbonyl complex [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(2)(CO)(2)] and then the tricarbonyl cluster [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(3)], the latter having a closed triangular metal core (Fe-Fe = 2.568(7) ?; Mn-Fe = 2.684(8) and 2.66(1) ?).  相似文献   

4.
Alkylation of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] with MeOTf occurs at the imido ligands to produce the methylamido derivative [Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)(μ-NH)(2)(μ-NHMe)(OTf)] which readily rearranges to form the methylimido complex [Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)(μ-NH)(μ-NH(2))(μ-NMe)(OTf)].  相似文献   

5.
The syntheses, structural characterization, and magnetic behavior of two new hexanuclear copper(II) complexes derived from R-phosphonic acids and 1,3-bis(dimethylamino)-2-propanol (Hbdmap) with formulas [Cu(6)(μ-bdmap)(3)(μ(3)-Ph-PO(3))(2)(μ(3)-O···H···μ(3)-O)(ClO(4))(2)(H(2)O)]·5H(2)O (1) and [Cu(6)(μ-bdmap)(3)(μ(3)-t-Bu-PO(3))(2)(μ(3)-O···H···μ(3)-O)(μ(1,3)-dca)(dca)(H(2)O)]·6H(2)O (2) (Ph-H(2)PO(3) = phenylphosphonic acid, t-Bu-H(2)PO(3) = tert-butylphosphonic acid, dca = dicyanamide) are reported. Compounds 1 and 2 are hexanuclear 3.111 R-phosphonate(2-)/1,3-bis(dimethylamino)-2-propanolato(1-) cages including in the center the [μ(3)-O···H···μ(3)-O](3-) unit. The temperature dependence of the magnetic properties of 1 and 2 clearly indicates an overall strong antiferromagnetic coupling confirmed by DFT calculations.  相似文献   

6.
Wei LP  Ren ZG  Zhu LW  Yan WY  Sun S  Wang HF  Lang JP  Sun ZR 《Inorganic chemistry》2011,50(10):4493-4502
Treatment of [Et(4)N][Tp*WS(3)] (1) (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) with 2 equiv of AgSCN in MeCN afforded a novel neutral compound [(Tp*WS(2))(2)(μ-S(2))] (2). Reactions of 2 with excess CuX (X = Cl, Br, I) in MeCN and CH(2)Cl(2) or CHCl(3) formed three neutral W/Cu/S clusters [{Tp*W(μ(3)-S)(3)Cu(3)(μ-Cl)}(2)Cu(μ-Cl)(2)(μ(7)-Cl)(MeCN)](2) (3), [{Tp*W(μ(3)-S)(3)Cu(3)}(2)Br(μ-Br)(2)(μ(4)-Br)(MeCN)] (4), and [{Tp*W(μ(3)-S)(3)Cu(3)}(2){Cu(2)(μ-I)(4)(μ(3)-I)(2)}] (5), respectively. On the other hand, treatment of 2 with CuX (X = Cl, Br) in the presence of Et(4)NX (X = Cl, Br) produced two anionic W/Cu/S clusters [Et(4)N][{Tp*W(μ(3)-S)(3)Cu(3)X}(2)(μ-X)(2)(μ(4)-X)] (6: X = Cl; 7 X = Br). Compounds 2-7 were characterized by elemental analysis, IR, UV-vis, (1)H NMR, electrospray ionization (ESI) mass spectra, and single-crystal X-ray crystallography. The dimeric structure of 2 can be viewed as two [Tp*WS(2)] fragments in which two W atoms are connected by one S(2)(2-) dianion. Compounds 3-7 all possess unique halide-bridged double cubanelike frameworks. For 3, two [Tp*W(μ(3)-S)(3)Cu(3)](2+) dications are linked via a μ(7)-Cl(-) bridge, two μ-Cl(-) bridges, and a [Cu(MeCN)(μ-Cl)(2)](+) bridge. For 4, one [Tp*W(μ(3)-S)(3)Cu(3)(MeCN)](2+) dication and one [Tp*W(μ(3)-S)(3)Cu(3)Br](+) cation are linked via a μ(4)-Br(-) and two μ-Br(-) bridges. For 5, the two [Tp*W(μ(3)-S)(3)Cu(3)](2+) dications are bridged by a linear [(μ-I)(2)Cu(μ(3)-I)(2)Cu(μ-I)(2)](4+) species. For 6 and 7, two [Tp*W(μ(3)-S)(3)Cu(3)X](+) cations are linked by a μ(4)-X(-) and two μ-X(-) bridges (X = Cl, Br). In addition, the third-order nonlinear optical (NLO) properties of 2-7 in MeCN/CH(2)Cl(2) were investigated by using femtosecond degenerate four-wave mixing (DFWM) technique.  相似文献   

7.
The six-membered heavy atom heterocycles [Re(2)(CO)(8)(μ-SbPh(2))(μ-H)](2), 5, and Pd[Re(2)(CO)(8)(μ-SbPh(2))(μ-H)](2), 7, have been prepared by the palladium-catalyzed ring-opening cyclo-dimerization of the three-membered heterocycle Re(2)(CO)(8)(μ-SbPh(2))(μ-H), 3. The palladium atom that lies in the center of the heterocycle 7 was removed to yield 5. The palladium removal was found to be partially reversible leading to an unusual example of host-guest behavior. A related dipalladium complex Pd(2)Re(4)(CO)(16)(μ(4)-SbPh)(μ(3)-SbPh(2))(μ-Ph)(μ-H)(2), 6, was also formed in these reactions of palladium with 3.  相似文献   

8.
Treatment of [Et(4)N][Tp*W(μ(3)-S)(3)(CuBr)(3)] (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) (1) with an excess of α-methylpyridine (α-MePy) and NH(4)PF(6) in CH(2)Cl(2) afforded a cationic cluster [Tp*W(μ(3)-S)(3)Cu(3)(α-MePy)(3)(μ(3)-Br)](PF(6)) (2) while the reaction of 1 with an excess of 1,4-pyrazine (1,4-pyz) and NH(4)PF(6) in MeCN-CH(2)Cl(2) at 65 °C produced a polymeric cluster [Tp*W(μ(3)-S)(3)Cu(3)(1,4-pyz)((1,4-pyz)(0.5))(2)(μ(3)-Br)][Tp*W(μ(3)-S)(3)(CuBr)(3)] (3). Reactions of 1 with melamine (MA) in 1:1 or 1:2 gave rise to another polymeric cluster [{Tp*W(μ(3)-S)(3)Cu(3)Br(μ(3)-Br)}(2)(MA)(2)] (4) and a neutral cluster [Tp*W(μ(3)-S)(3)Cu(3)Br(μ(3)-Br)(MA)(2)] (5), respectively. Compounds 2-5 were characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H NMR, electrospray ionization (ESI) mass spectra and X-ray crystallography. The cation of 2 has a cubane-like [Tp*W(μ(3)-S)(3)Cu(3)(μ(3)-Br)] structure with each α-MePy ligand coordinated at one Cu(i) center. For 3, each [Tp*W(μ(3)-S)(3)Cu(3)(μ(3)-Br)] core is interconnected by 1,4-pyz bridges to form a 1D cationic zigzag chain with the [Tp*W(μ(3)-S)(3)(CuBr)(3)](-) anions arranged along its two sides. For 4, each [Tp*W(μ(3)-S)(3)Cu(3)(μ(3)-Br)] core is interlinked by MA bridges to afford a 1D spiral chain. 5 adopts a cubane-like [Tp*W(μ(3)-S)(3)Cu(3)(μ(3)-Br)] structure in which one terminal Br and two MA ligands are coordinated at three Cu centers. The third-order nonlinear optical (NLO) properties of 1-5 in DMF were investigated by femtosecond degenerate four-wave mixing (DFWM) technique with a 80 fs pulse width at 800 nm. Compounds 1-5 exhibit good NLO responses, and 3 and 4 possess the largest second-order hyperpolarizability γ values among the known W/Cu/S clusters bearing the [Tp*WS(3)] unit.  相似文献   

9.
Silver(I) coordination complexes with the versatile and biomimetic ligands 1,2,4-triazolo[1,5-a]pyrimidine (tp), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) and 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp) all feature dinuclear [Ag(2)(μ-tp)(2)](2+) building units (where tp is a triazolopyrimidine derivative), which are the preferred motif, independently of the counter-anion used. According to AIM (atoms in molecules) and ELF (electron localization function) analyses, this fact is due to the great stability of these dinuclear species. The complexes structures range from the dinuclear entities [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](BF(4))(2) (1), [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](ClO(4))(2) (2), [Ag(2)(μ-7atp)(2)](ClO(4))(2) (3) and [Ag(2)(μ-dmtp)(2)(CH(3)CN)](PF(6))(ClO(4)) (4) over the 1D polymer chain [Ag(2)(μ-CF(3)SO(3))(2)(μ-dmtp)(2)](n) (5) to the 3D net {[Ag(2)(μ(3)-tp)(2)](PF(6))(2)·~6H(2)O}(n) (6) with NbO topology.  相似文献   

10.
The reaction of CuX(2) (X(-) ≠ F(-)) salts with 1 equiv of 3-pyridyl-5-tert-butylpyrazole (HL) in basic methanol yields blue solids, from which disk complexes of the type [Cu(7)(μ(3)-OH)(4)(μ-OR)(2)(μ-L)(6)](2+) and/or the cubane [Cu(4)(μ(3)-OH)(4)(HL)(4)](4+) can be isolated by recrystallization under the appropriate conditions. Two of the disk complexes have been prepared in crystalline form: [Cu(7)(μ(3)-OH)(4)(μ-OCH(2)CF(3))(2)(μ-L)(6)][BF(4)](2) (2) and [Cu(7)(μ(3)-OH)(4)(μ-OCH(3))(2)(μ-L)(6)]Cl(2)·xCH(2)Cl(2) (3·xCH(2)Cl(2)). The molecular structures of both compounds as solvated crystals can be described as [Cu?Cu(6)(μ-OH)(4)(μ-OR)(2)(μ-L)(6)](2+) (R = CH(2)CF(3) or CH(3)) adducts. The [Cu(6)(μ-OH)(4)(μ-OR)(2)(μ-L)(6)] ring is constructed of six square-pyramidal Cu ions, linked by 1,2-pyrazolido bridges from the L(-) ligands and by basal, apical-bridging hydroxy or alkoxy groups, while the central Cu ion is bound to the four metallamacrocyclic hydroxy donors in a near-regular square-planar geometry. The L(-) ligands project above and below the metal ion core, forming two bowl-shaped cavities that are fully (R = CH(2)CF(3)) or partially (R = CH(3)) occupied by the alkoxy R substituents. Variable-temperature magnetic susceptibility measurements on 2 demonstrated antiferromagnetic interactions between the Cu ions, yielding a spin-frustrated S = (1)/(2) magnetic ground state that is fully populated below around 15 K. Electrospray ionization mass spectrometry, UV/vis/near-IR, and electron paramagnetic resonance measurements imply that the heptacopper(II) disk motif is robust in organic solvents.  相似文献   

11.
The reactions of [Ru(3)(CO)(12)] with four aromatic diazines have been studied in THF at reflux temperature. With phthalazine (L(1)), the compound [Ru(3)(μ-κ(2)N(2)N(3)-L(1))(μ-CO)(3)(CO)(7)] (1), which contains an intact phthalazine ligand in an axial position bridging an Ru-Ru edge through both N atoms, is initially formed but it reacts with more phthalazine to give [Ru(3)(κN(2)-L(1))(μ-κ(2)N(2)N(3)-L(1))(μ-CO)(3)(CO)(6)] (2), in which a π-π stacking interaction between the aromatic rings of both ligands determines their position in cluster axial sites on the same face of the Ru(3) triangle. With quinazoline (HL(2)), the cyclometalated hydrido decacarbonyl derivative [Ru(3)(μ-H)(μ-κ(2)N(3)C(4)-L(2))(CO)(10)] (3) is initially produced but it partially decarbonylates under the reaction conditions to give [Ru(6)(μ-H)(2)(μ-κ(2)N(3)C(4)-L(2))(μ(3)-κ(3)-N(1)N(3)C(4)-L(2))(CO)(19)] (4), which results from the displacement of a CO ligand of 3 by the uncoordinated N(1) atom of another molecule of 3. With 4,7-phenanthroline (H(2)L(3)), the stepwise formation of the cyclometalated derivatives [Ru(3)(μ-H)(μ-κ(2)N(4)C(3)-HL(3))(CO)(10)] (5) and two isomers of [Ru(6)(μ-H)(2)(μ(4)-κ(4)N(4)C(3)N(7)C(8)-L(3))(CO)(20)] (6a, 6b) takes place. In compounds 6a and 6b, two Ru(3)(μ-H)(CO)(10) trinuclear units are symmetrically (C(2) in 6a or C(S) in 6b) bridged by a doubly-cyclometalated 4,7-phenanthroline ligand. With 2,3'-bipyridine (HL(4)), two products have been isolated, [Ru(3)(μ-H)(μ-κ(2)N(3')C(4')-L(4))(CO)(10)] (7) and [Ru(3)(μ-H)(μ-κ(3)N(2)N(3')C(2')-L(4))(CO)(9)] (8). While compound 7 contains an N(3')C(4')-cyclometalated 2,3'-bipyridine, in compound 8 an N(3')C(2')-cyclometalation is accompanied by the coordination of the N(2) atom of the remaining pyridine fragment. The structures of compounds 2, 3, 4, 6a and 8 have been determined by X-ray diffraction crystallography.  相似文献   

12.
The reactions of heteroleptic GaCp*/CO containing transition metal complexes of iron and cobalt, namely [(CO)(3)M(μ(2)-GaCp*)(m)M(CO)(3)] (Cp* = pentamethylcyclopentadienyl; M = Fe, m = 3; M = Co, m = 2) and [Fe(CO)(4)(GaCp*)], with ZnMe(2) in toluene and the presence of a coordinating co-solvent were investigated. The reaction of the iron complex [Fe(CO)(4)(GaCp*)] with ZnMe(2) in presence of tetrahydrofurane (thf) leads to the dimeric compound [(CO)(4)Fe{μ(2)-Zn(thf)(2)}(2)Fe(CO)(4)] (1). Reaction of [(CO)(3)Fe(μ(2)-GaCp*(3))Fe(CO)(3)] with ZnMe(2) and stoichiometric amounts of thf leads to the formation of [(CO)(3)Fe{μ(2)-Zn(thf)(2)}(2)(μ(2)-ZnMe)(2)Fe(CO)(3)] (2) containing {Zn(thf)(2)} as well as ZnMe ligands. Using pyridine (py) instead of thf leads to [(CO)(3)Fe{μ(2)-Zn(py)(2)}(3)Fe(CO)(3)] (3) via replacement of all GaCp* ligands by three{Zn(py)(2)} groups. In contrast, reaction of [(CO)(3)Co(μ(2)-GaCp*)(2)Co(CO)(3)] with ZnMe(2) in the presence of py or thf leads in both cases to the formation of [(CO)(3)Co{μ(2)-ZnL(2)}(μ(2)-ZnCp*)(2)Co(CO)(3)] (L = py (4), thf (5)) via replacement of GaCp* with {Zn(L)(2)} units as well as Cp* transfer from the gallium to the zinc centre. All compounds were characterised by NMR spectroscopy, IR spectroscopy, single crystal X-ray diffraction and elemental analysis.  相似文献   

13.
Xiong K  Jiang F  Gai Y  Zhou Y  Yuan D  Su K  Wang X  Hong M 《Inorganic chemistry》2012,51(5):3283-3288
A series of discrete complexes, [Ni(8)(BTC4A)(2)(μ(6)-CO(3))(2)(μ-CH(3)COO)(4)(dma)(4)]·H(2)O (1), [Ni(8)(BTC4A)(2)(μ(6)-CO(3))(2)(μ-Cl)(2)(μ-HCOO)(2)(dma)(4)]·2DMF·2CH(3)CN (2), [Ni(8)(PTC4A)(2) (μ(6)-CO(3))(2)(μ-CH(3)COO)(4)(dma)(4)]·DMF (3), and [Ni(8)(PTC4A)(2)(μ(6)-CO(3))(2)(μ-OH)(μ-HCOO)(3) (dma)(4)] (4) (p-tert-butylthiacalix[4]arene = H(4)BTC4A, p-phenylthiacalix[4]arene = H(4)PTC4A, dma = dimethylamine, and DMF = N,N'-dimethylformamide), have been prepared under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction analyses, powder XRD, and IR spectroscopy. These four complexes are stacked by dumbbell-like building blocks with one chairlike octanuclear-nickel(II) core, which is capped by two thiacalix[4]arene molecules and connected by two in situ generated carbonato anions and different auxiliary anions. This work implied that not only the solvent molecules but also the upper-rim groups of thiacalix[4]arenes have significant effects on the self-assembly of the dumbbell-like building blocks. The magnetic properties of complexes 1-4 were examined, indicating strong antiferromagnetic interactions between the nickel(II) ions in the temperature range of 50-300 K.  相似文献   

14.
The first examples of carbonyl heterocubane-type clusters, [Fe(4)(μ(3)-Q)(2)(μ(3)-AsMe)(2)(CO)(12)] (2, Q = Se (a), Te (b)), which simultaneously contain elements of group 15 and 16, were obtained by thermolysis of [Fe(3)(μ(3)-Q)(μ(3)-AsMe)(CO)(9)] (1) in acetonitrile. The clusters 2 possess a cubic Fe(4)Q(2)As(2) core with alternating Fe and Q/As atoms. The coordination environment of the Fe atoms is close to octahedral, and those of Q or As atoms are tetrahedral, which determines the distorted cubic cluster core geometry. The second main products of thermolysis are the clusters [Fe(6)(μ(3)-Q)(μ(4)-Q)(μ(4)-AsMe)(2)(CO)(12)] (3a,b), whose core contains double the elemental composition of the initial cluster 1. In the case of the Se-containing cluster two other minor products [Fe(4)(μ(4)-Se)(μ(4)-SeAsMe)(CO)(12)] (4) and [Fe(3)(μ(3)-AsMe)(2)(CO)(9)] (5) are formed. Based on the structures and properties of the products, a reaction route for the conversion of 1 into 2 is proposed, which includes the associative formation of the clusters 3 as intermediates, unlike the dissociative pathways previously known for the transformations of similar clusters of the type [Fe(3)Q(2)(CO)(9)].  相似文献   

15.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

16.
Oxidizing the trimer V(3)(μ(3)-O)(O(2))(μ(2)-O(2)P(Bn)(2))(6)(H(2)O) in the presence of excess (t)BuOOH results in V(4)(μ(3)-O)(4)(μ(2)-O(2)P(Bn)(2))(4)(O(4)) and heating W(CO)(6) and bis(benzyl)phosphinic acid in 1:1 EtOH/THF at 120 °C produces W(4)(μ(3)-O)(4)(μ(2)-O(2)P(Bn)(2))(4)(O(4)).  相似文献   

17.
A series of ruthenium complexes was isolated and characterized in the course of reactions aimed at studying the reduction of hydrazine to ammonia in bimetallic systems. The diruthenium complex {[HPNPRu(N(2))](2)(μ-Cl)(2)}(BF(4))(2) (2) (HPNP = HN(CH(2)CH(2)P(i)Pr(2))(2)) reacted with 1 equiv of hydrazine to generate [(HPNPRu)(2)(μ(2)-H(2)NNH(2))(μ-Cl)(2)](BF(4))(2) (3) and with an excess of the reagent to form [HPNPRu(NH(3))(κ(2)-N(2)H(4))](BF(4))Cl (5). When phenylhydrazine was added to 2, the diazene species [(HPNPRu)(2)(μ(2)-HNNPh)(μ-Cl)(2)](BF(4))(2) (4) was obtained. Treatment of 2 with H(2) or CO yielded {[HPNPRu(H(2))](2)(μ-Cl)(2)}(BF(4))(2) (7) and [HPNPRuCl(CO)(2)]BF(4) (8), respectively. Abstraction of chloride using AgOSO(2)CF(3) or AgBPh(4) afforded the species [(HPNPRu)(2)(μ(2)-OSO(2)CF(3))(μ-Cl)(2)]OSO(2)CF(3) (9) and [(HPNPRu)(2)(μ-Cl)(3)]BPh(4) (10), respectively. Complex 3 reacted with HCl/H(2)O or HCl/Et(2)O to produce ammonia stoichiometrically; the complex catalytically disproportionates hydrazine to generate ammonia.  相似文献   

18.
A series of mixed bis(μ-silylene) complexes of rhodium and iridium [RhIr(CO)(2)(μ-SiHR)(μ-SiR(1)R(2))(dppm)(2)] (R = R(1) = R(2) = Ph (4); R = R(1) = Ph, R(2) = Cl (5); R = R(1) = Ph, R(2) = Me (6); R = 3,5-C(6)H(3)F(2), R(1) = Ph, R(2) = Me (7); R = 3,5-C(6)H(3)F(2), R(1) = 2,4,6-C(6)H(2)Me(3), R(2) = H (8)) have been synthesized by the reaction of the silylene-bridged dihydride complexes, [RhIr(H)(2)(CO)(2)(μ-SiHR)(dppm)(2)] (1, R = Ph; 2, R = C(6)H(3)F(2)), with a number of secondary or primary silanes (Ph(2)SiH(2), PhClSiH(2), PhMeSiH(2), C(6)H(2)Me(3)SiH(3)). The influence of substituents and π-stacking interactions on the Si···Si distance (determined by X-ray crystallography) in this series and the implications regarding the nature of the Si···Si interactions are discussed. A series of novel (μ-silylene)/(μ-germylene) complexes, [RhIr(CO)(2)(μ-SiHPh)(μ-GePh(2))(dppm)(2)] (9) and [RhIr(CO)(2)(μ-SiR(1)R(2))(μ-GeHPh)(dppm)(2)] (R(1) = Ph, R(2) = H (11); R(1) = R(2) = Ph (12); R(1) = Ph, R(2) = Me (13)), have also been synthesized by reaction of the silylene-bridged dihydride complex, [RhIr(H)(2)(CO)(2)(μ-SiHPh)(dppm)(2)] (1), with 1 equiv of diphenylgermane and by reaction of the germylene-bridged dihydride complex, [RhIr(H)(2)(CO)(2)(μ-GeHPh)(dppm)(2)] (3), with 1 equiv of the respective silanes. These complexes have been characterized by multinuclear NMR spectroscopy and X-ray crystallography.  相似文献   

19.
Amide and lithium aryloxide gallates [Li(+){RGaPh(3)}(-)] (R = NMe(2), O-2,6-Me(2)C(6)H(3)) react with the μ(3)-alkylidyne oxoderivative ligand [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] (1) to afford the gallium-lithium-titanium cubane complexes [{Ph(3)Ga(μ-R)Li}{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] [R = NMe(2) (3), O-2,6-Me(2)C(6)H(3) (4)]. The same complexes can be obtained by treatment of the [Ph(3)Ga(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CH)] (2) adduct with the corresponding lithium amide or aryloxide, respectively. Complex 3 evolves with formation of 5 as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)](+) together with the anionic [(GaPh(3))(2)(μ-NMe(2))](-) unit. On the other hand, the reaction of 1 with Li(p-MeC(6)H(4)) and GaPh(3) leads to the complex [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][GaLi(p-MeC(6)H(4))(2)Ph(3)] (6). X-ray diffraction studies were performed on 1, 2, 4, and 5, while trials to obtain crystals of 6 led to characterization of [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][PhLi(μ-C(6)H(5))(2)Ga(p-MeC(6)H(4))Ph] 6a.  相似文献   

20.
The bridging fluoroolefin ligands in the complexes [Ir(2)(CH(3))(CO)(2)(μ-olefin)(dppm)(2)][OTf] (olefin = tetrafluoroethylene, 1,1-difluoroethylene; dppm = μ-Ph(2)PCH(2)PPh(2); OTf(-) = CF(3)SO(3)(-)) are susceptible to facile fluoride ion abstraction. Both fluoroolefin complexes react with trimethylsilyltriflate (Me(3)SiOTf) to give the corresponding fluorovinyl products by abstraction of a single fluoride ion. Although the trifluorovinyl ligand is bound to one metal, the monofluorovinyl group is bridging, bound to one metal through carbon and to the other metal through a dative bond from fluorine. Addition of two equivalents of Me(3)SiOTf to the tetrafluoroethylene-bridged species gives the difluorovinylidene-bridged product [Ir(2)(CH(3))(OTf)(CO)(2)(μ-OTf)(μ-C=CF(2))(dppm)(2)][OTf]. The 1,1-difluoroethylene species is exceedingly reactive, reacting with water to give 2-fluoropropene and [Ir(2)(CO)(2)(μ-OH)(dppm)(2)][OTf] and with carbon monoxide to give [Ir(2)(CO)(3)(μ-κ(1):η(2)-C≡CCH(3))(dppm)(2)][OTf] together with two equivalents of HF. The trifluorovinyl product [Ir(2)(κ(1)-C(2)F(3))(OTf)(CO)(2)(μ-H)(μ-CH(2))(dppm)(2)][OTf], obtained through single C-F bond activation of the tetrafluoroethylene-bridged complex, reacts with H(2) to form trifluoroethylene, allowing the facile replacement of one fluorine in C(2)F(4) with hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号