首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present an investigation into hydrogen bonding dynamics and kinetics in water using femtosecond infrared spectroscopy of the OH stretching vibration of HOD in D(2)O. Infrared vibrational echo peak shift and polarization-selective pump-probe experiments were performed with mid-IR pulses short enough to capture all relevant dynamical processes. The experiments are self-consistently analyzed with a nonlinear response function expressed in terms of three dynamical parameters for the OH stretching vibration: the frequency correlation function, the lifetime, and the second Legendre polynomial dipole reorientation correlation function. It also accounts for vibrational-relaxation-induced excitation of intermolecular motion that appears as heating. The long time, picosecond behavior is consistent with previous work, but new dynamics are revealed on the sub-200 fs time scale. The frequency correlation function is characterized by a 50 fs decay and 180 fs beat associated with underdamped intermolecular vibrations of hydrogen bonding partners prior to 1.4 ps exponential relaxation. The reorientational correlation function observes a 50 fs librational decay prior to 3 ps diffusive reorientation. Both of these correlation functions compare favorably with the predictions from classical molecular dynamics simulations. The time-dependent behavior can be separated into short and long time scales by the 340 fs correlation time for OH frequency shifts. The fast time scales arise from dynamics that are mainly local: fluctuations in hydrogen bond distances and angles within relatively fixed intermolecular configurations. On time scales longer than the correlation time, dephasing and reorientations reflect collective reorganization of the liquid structure. Since the OH transition frequency and dipole are only weakly sensitive to these collective coordinates, this is a kinetic regime which gives an effective rate for exchange of intermolecular structures.  相似文献   

2.
Rearrangements of the hydrogen bond network of liquid water are believed to involve rapid and concerted hydrogen bond switching events, during which a hydrogen bond donor molecule undergoes large angle molecular reorientation as it exchanges hydrogen bonding partners. To test this picture of hydrogen bond dynamics, we have performed ultrafast 2D IR spectral anisotropy measurements on the OH stretching vibration of HOD in D(2)O to directly track the reorientation of water molecules as they change hydrogen bonding environments. Interpretation of the experimental data is assisted by modeling drawn from molecular dynamics simulations, and we quantify the degree of molecular rotation on changing local hydrogen bonding environment using restricted rotation models. From the inertial 2D anisotropy decay, we find that water molecules initiating from a strained configuration and relaxing to a stable configuration are characterized by a distribution of angles, with an average reorientation half-angle of 10°, implying an average reorientation for a full switch of ≥20°. These results provide evidence that water hydrogen bond network connectivity switches through concerted motions involving large angle molecular reorientation.  相似文献   

3.
4.
We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton.  相似文献   

5.
We use polarization-resolved mid-infrared pump-probe spectroscopy to study the dynamics of the hydration shells of hydroxide ions (OH(-)). We excite the OH stretch vibrations of H(2)O molecules solvating the OH(-) ion and observe that this excitation decays with a relaxation time constant T(1) of 200 fs. This relaxation is followed by a thermalization process that becomes slower with increasing concentration of OH(-). The prethermalized state is observed to be anisotropic, showing that the energy of the excited OH stretch vibrations is dissipated within the hydration complex. The anisotropy of the prethermalized state decays both as a result of the reorientation of the OH(-) hydration complex and heat diffusion from the excited complexes to unexcited complexes. Modeling the anisotropy data at different concentrations allows for an accurate estimate of the number of water molecules in the hydration shell of OH(-), the reorientation dynamics of the OH(-) hydration complex, and the molecular-scale heat diffusivity.  相似文献   

6.
We use femtosecond mid-infrared pump-probe spectroscopy to study the orientational relaxation of HDO molecules dissolved in H2O. In order to obtain a reliable anisotropy decay we model the effects of heating and correct for these effects. We have measured the reorientation time constant of the OD vibration from 2430 to 2600 cm(-1), and observe a value of 2.5 ps that shows no variation over this frequency interval. Our results are discussed in the context of previous experiments that have been performed on the complementary system of HDO dissolved in D2O.  相似文献   

7.
Ultrafast pump-probe anisotropy experiments have been performed on liquid H(2)O and D(2)O. In both cases, the anisotropy decay is extremely fast (on the order of 100 or 200 fs) and is presumed due to resonant vibrational energy transfer. The experiments have been interpreted in terms of the Fo?rster theory, wherein the rate constant for intermolecular hopping transport is proportional to the inverse sixth power of the distance between the vibrational chromophores. In particular, the anisotropy decay is assumed to be simply related to the survival probability as calculated with the Fo?rster theory. While the theory fits the data well, and is a reasonable model for these systems, there are several assumptions in the theory that might be suspect for water. Using our mixed quantum/classical model for vibrational spectroscopy and dynamics in liquid water, which agrees well with anisotropy decay experiments on the pure liquids as well as H(2)O/D(2)O mixtures, we critically analyze both the survival probability and anisotropy decay, in order to assess the applicability of the Fo?rster theory.  相似文献   

8.
Femtosecond infrared (IR) two-color pump-probe experiments were used to investigate the nonlinear response of the D2O stretching vibration in weakly hydrated dimyristoyl-phosphatidylcholine (DMPC) membrane fragments. The vibrational lifetime is comparable to or longer than that in bulk D2O and is frequency dependent, as it decreases with increasing probe frequency. Also, the lifetime increases when the water content of the sample is lowered. The measured lifetimes range between 903 and 390 fs. A long-lived spectral feature grows in following the excitation and is attributed to photoinduced D-bond breaking. The photoproduct spectrum differs from the steady state difference Fourier transform infrared (FTIR) spectrum, showing that the full thermalization of the excitation energy happens on a much longer time scale than the time interval considered (12 ps). Further evidence of the inhomogeneous character of the water residing in the polar region of the bilayer comes from the spectral anisotropy. The water molecules absorbing on the low frequency side of the absorption band show no decay at all of the anisotropy, while an ultrafast partial decay appears when the high frequency side of the spectrum is probed. The overall behavior differs remarkably from that observed with similar experiments in bulk water and in water segregated in inverse micelles. In weakly hydrated phospholipid membranes, water molecules are present mostly as isolated species, prevalently involved in strong, rigid, and persistent hydrogen bonds with the polar groups of the bilayer molecules. This specific character appears to have a direct effect on the structural stability and thermal properties of the membrane.  相似文献   

9.
We study how the ultrafast intermolecular hopping of electrons excited from the water O1s core level into unoccupied orbitals depends on the local molecular environment in liquid water. Our probe is the resonant Auger decay of the water O1s core hole (lifetime ~3.6 fs), by which we show that the electron-hopping rate can be significantly reduced when a first-shell water molecule is replaced by an atomic ion. Decays resulting from excitations at the O1s post-edge feature (~540 eV) of 6 m LiBr and 3 m MgBr(2) aqueous solutions reveal electron-hopping times of ~1.5 and 1.9 fs, respectively; the latter represents a 4-fold increase compared to the corresponding value in neat water. The slower electron-hopping in electrolytes, which shows a strong dependence on the charge of the cations, can be explained by ion-induced reduction of water-water orbital mixing. Density functional theory electronic structure calculations of solvation geometries obtained from molecular dynamics simulations reveal that this phenomenon largely arises from electrostatic perturbations of the solvating water molecules by the solvated ions. Our results demonstrate that it is possible to deliberately manipulate the rate of charge transfer via electron-hopping in aqueous media.  相似文献   

10.
The polarized Raman spectrum and the time dependence of the transient infrared (TRIR) absorption anisotropy are calculated for the OH stretching mode of liquid water (neat liquid H2O) by using time-domain formulations, which include the effects of both the diagonal frequency modulations (of individual oscillators) induced by the interactions between the dipole derivatives and the intermolecular electric field, and the off-diagonal (intermolecular) vibrational coupling described by the transition dipole coupling (TDC) mechanism. The IR spectrum of neat liquid H2O and the TRIR anisotropy of a liquid mixture of H2O/HDO/D2O are also calculated. It is shown that the calculated features of these optical signals, including the temperature dependence of the polarized Raman and IR spectra, are in reasonable agreement with the experimental results, indicating that the frequency separation between the isotropic and anisotropic components of the polarized Raman spectrum and the rapid decay (approximately 0.1 ps) of the TRIR anisotropy of the OH stretching mode of neat liquid H2O are mainly controlled by the resonant intermolecular vibrational coupling described by the TDC mechanism. Comparing with the time evolution of vibrational excitations, it is suggested that the TRIR anisotropy decays in the time needed for the initially localized vibrational excitations to delocalize over a few oscillators. It is also shown that the enhancement of the dipole derivatives by the interactions with surrounding molecules is an important factor in generating the spectral profiles of the OH stretching Raman band. The time-domain behavior of the molecular motions that affect the spectroscopic features is discussed.  相似文献   

11.
The OH stretch line shape of ice Ih exhibits distinct peaks, the assignment of which remains controversial. We address this longstanding question using two dimensional infrared (2D IR) spectroscopy of the OH stretch of H(2)O and the OD stretch of D(2)O of ice Ih at T = 80 K. The isotropic response is dominated by a 2D line shape component which does not depend on the pump pulse frequency. The decay time of the component that does depend on the pump frequency is calculated using singular value decomposition (bi-exponential decay H(2)O: 30 fs, 490 fs; D(2)O: 40 fs, 690 fs). The anisotropic contribution exhibits on-diagonal peaks, which decay on a very fast timescale (H(2)O: 85 fs; D(2)O: 65 fs), with no corresponding anisotropic cross-peaks. Both isotropic and anisotropic results indicate that randomization of excited dipoles occurs with a very rapid rate, just like in neat liquid water. We conclude that the underlying mechanism relates to the complex interplay between exciton migration and exciton-phonon coupling.  相似文献   

12.
The complex environments experienced by water molecules in the hydrophilic channels of Nafion membranes are studied by ultrafast infrared pump-probe spectroscopy. A wavelength dependent study of the vibrational lifetime of the O-D stretch of dilute HOD in H(2)O confined in Nafion membranes provides evidence of two distinct ensembles of water molecules. While only two ensembles are present at each level of membrane hydration studied, the characteristics of the two ensembles change as the water content of the membrane changes. Time dependent anisotropy measurements show that the orientational motions of water molecules in Nafion membranes are significantly slower than in bulk water and that lower hydration levels result in slower orientational relaxation. Initial wavelength dependent results for the anisotropy show no clear variation in the time scale for orientational motion across a broad range of frequencies. The anisotropy decay is analyzed using a model based on restricted orientational diffusion within a hydrogen bond configuration followed by total reorientation through jump diffusion.  相似文献   

13.
Measurements of ultrafast fluorescence anisotropy decay in model branched dendritic molecules of different symmetry are reported. These molecules contain the fundamental branching center units of larger dendrimer macromolecules with either three (C(3))- or four (T(d), tetrahedral)-fold symmetry. The anisotropy for a tetrahedral system is found to decay on a subpicosecond time scale (880 fs). This decay can be qualitatively explained by F?rster-type incoherent energy migration between chromophores. Alternatively, for a nitrogen-centered trimer system, the fluorescence anisotropy decay time (35 fs) is found to be much shorter than that of the tetramers, and the decay cannot be attributed to an incoherent hopping mechanism. In this case, a coherent interchromophore energy transport mechanism should be considered. The mechanism of the ultrafast energy migration process in the branched systems is interpreted by use of a phenomenological quantum mechanical model, which examines the two extreme cases of incoherent and coherent interactions.  相似文献   

14.
Time- and frequency-domain three-wave mixing spectroscopy (IR+visible sum frequency generation) is developed as the lowest-order nonlinear technique that is both surface selective and capable of measuring spectral evolution of vibrational coherences. Using 70 fs infrared and 40 fs visible pulses, we observe ultrafast spectral dynamics of the OD stretch of D2O at the CaF2 surface. Spectral shifts indicative of the hydrogen-bond network rearrangement occur on the 100 fs time scale, within the observation time window determined by the vibrational dephasing. By tuning the IR pulse wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different subensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding structures) shows monotonic decay and nu(OD) frequency shift to the red on a 100 fs time scale, which is better described by a Gaussian than an exponential frequency correlation function. In contrast, the red-side excitation (stronger H-bonding structures) results in a blue spectral shift and a recursion in the signal at 125+/-10 fs, indicating the presence of an underdamped intermolecular mode of interfacial water.  相似文献   

15.
Anisotropy time dependence of photoexcited C50 and C70 has been measured by picosecond transient grating techniques at room temperature in various solvents. The monoexponential anisotropy decay was observed for the C60 molecule and biexponential anisotropy decay was observed for the C70 molecule. Both for the C60 and for the C70 molecules anisotropy time decay is very fast. The data obtained were analyzed in terms of the rotational reorientation of fullerene molecules in solvents. Hynes-Kapral-Weinberg theory reasonably explains the observed reorientation times of fullerenes molecules. The dielectric friction effect on the C70 rotational reorientation on the short axis is reported.  相似文献   

16.
In this and the following paper, we describe the ultrafast structural fluctuations and rearrangements of the hydrogen bonding network of water using two-dimensional (2D) infrared spectroscopy. 2D IR spectra covering all the relevant time scales of molecular dynamics of the hydrogen bonding network of water were studied for the OH stretching absorption of HOD in D2O. Time-dependent evolution of the 2D IR line shape serves as a spectroscopic observable that tracks how different hydrogen bonding environments interconvert while changes in spectral intensity result from vibrational relaxation and molecular reorientation of the OH dipole. For waiting times up to the vibrational lifetime of 700 fs, changes in the 2D line shape reflect the spectral evolution of OH oscillators induced by hydrogen bond dynamics. These dynamics, characterized through a set of 2D line shape analysis metrics, show a rapid 60 fs decay, an underdamped oscillation on a 130 fs time scale induced by hydrogen bond stretching, and a long time decay constant of 1.4 ps. 2D surfaces for waiting times larger than 700 fs are dominated by the effects of vibrational relaxation and the thermalization of this excess energy by the solvent bath. Our modeling based on fluctuations with Gaussian statistics is able to reproduce the changes in dispersed pump-probe and 2D IR spectra induced by these relaxation processes, but misses the asymmetry resulting from frequency-dependent spectral diffusion. The dynamical origin of this asymmetry is discussed in the companion paper.  相似文献   

17.
Fluorescence anisotropies of two structurally similar ionic probes, rhodamine 110 and fluorescein, were measured in di(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelles as a function of the mole ratio of water to surfactant W. This study was undertaken to explore the influence of water droplet size and electrostatic interactions on the rotational diffusion of the probe molecules. It was noticed that at W = 1 and 2, the anisotropy decays of both the probes display single-exponential behavior and for a particular value of W, the time constants sensed by rhodamine 110 and fluorescein are identical. Moreover, an increase in the reorientation time was observed from W = 1 to 2. These observations indicate that, at W = 1 and 2, it is the overall rotation of micelle which is responsible for the decay of the anisotropy and also rule out the possibility of internal rotation of the probes within the reverse micelles. However, from W = 4 to 20, the anisotropy decays of the probes could only be described by a biexponential function with two time constants. The rotational diffusion of rhodamine 110 and fluorescein in the above-mentioned range of W was rationalized using the two-step model. The average reorientation time decreases with an increase in W for both the probes, and this decrease is pronounced in the case of fluorescein compared to that in rhodamine 110. The decrease in the average reorientation time with W is due to the change in the micellar packing within the core. The significant reduction in the average reorientation time of fluorescein is a consequence of repulsive electrostatic interactions between the negatively charged probe and the anionic head groups of the surfactant AOT.  相似文献   

18.
In this paper, we report on our investigation into the vibrational dynamics of the antisymmetric stretching modes of SCN(-) and N(3)(-) in several polar solvents. We used an infrared (IR) pump-probe method to study orientational relaxation processes. In two aprotic solvents (N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)), the anisotropy decay shows a bimodal feature, whereas in other solvents the anisotropy decay can be fitted well by a single exponential function. We consider that the relative contribution of fast-decaying components is smaller in the other solvents than in DMF and DMSO. We discuss the possible origins of the different anisotropy decay behavior in different solvents. From the three-pulse IR photon echo measurements for SCN(-) and N(3)(-), we found that the time-correlation functions (TCFs) of vibrational frequency fluctuations decay on two different time scales, one of which is less than 100 fs and the other is approximately 3-6 ps. In aprotic solvents, the fast-decaying components of the TCFs on a <100 fs time scale play an important role in the vibrational frequency fluctuation, although the contribution of collective solvent reorganization in aprotic solvents was clearly observed to have small amplitudes. On the other hand, we found that the amplitude of components that decay in a few picoseconds and/or the constant offset of the TCF in protic solvents is relatively large compared with that in aprotic solvents. With the formation and dissociation of hydrogen bonds between ion solute and solvent molecules, the spectra of different solvated species are exchanged with each other and merged into one band. We considered that this exchange may be an origin of slow-decaying components of the TCFs and that the decay of the TCFs corresponds to the time scales of the exchange for protic solvents such as formamide. The mechanism of vibrational frequency fluctuations for the antisymmetric stretching modes of SCN(-) and N(3)(-) is discussed in terms of the difference between protic and aprotic solvents.  相似文献   

19.
We use femtosecond midinfrared pump-probe spectroscopy to compare the ultrafast dynamics of HDO dissolved in D2O and H2O. For both systems the vibrational energy relaxation proceeds through an intermediate state. The relaxation leads to heating of the sample, which is observed in the transient spectra. In order to obtain the correct anisotropy decay, the ingrowing heating signal is subtracted from the raw data. For the OD vibration this procedure works well. For the OH vibration, however, we find an additional effect that leads to a severe distortion of the anisotropy. We show that this effect can be explained by a slightly faster reorientation of excited molecules during their relaxation as compared to unexcited molecules. We construct a model that includes this effect and is able to reproduce the experimental data. Using this model we show how the distorted anisotropy can be corrected.  相似文献   

20.
The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum/classical model for the OD stretch spectroscopy of dilute HDO in H(2)O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation that this shift results from the hydrogen bonding of water to the lipid phosphate group. From the pump-probe anisotropy decay, we confirm that the reorientational motions of water molecules slow significantly as hydration decreases, with water bound in the lipid carbonyl region undergoing the slowest rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号