首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When supercritical carbon dioxide (scCO(2)) is injected into deep subsurface reservoirs, much of the affected volume consists of pores containing both water and scCO(2), with water films remaining as the mineral-wetting phase. Although water films can affect multiphase flow and mediate reactions at mineral surfaces, little is known about how film thicknesses depend on system properties. Here, the thicknesses of water films were estimated on the basis of considerations of capillary pressure needed for the entry of CO(2) and disjoining pressures in films resulting from van der Waals and electric double-layer interactions. Depth-dependent CO(2) and water properties were used to estimate Hamaker constants for water films on silica and smectite surfaces under CO(2) confinement. Dispersion interactions were combined with approximate solutions to the electric double layer film thickness-pressure relationship in a Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis, with CO(2) as the confining fluid. Under conditions of elevated pressure, temperature, and salinity commonly associated with CO(2) sequestration, adsorbed water films in reservoir rock surfaces are typically predicted to be less than 10 nm in thickness. Decreased surface charge of silica under the acidic pH of CO(2)-equilibrated water and elevated salinity is predicted to compress the electric double layer substantially, such that the dispersion contribution to the film thickness is dominant. Relative to silica, smectite surfaces are predicted to support thicker water films under CO(2) confinement because of greater electrostatic and dispersion stabilization.  相似文献   

2.
The nature of interactions between ethanol and carbon dioxide has been characterized using simulations via the Car-Parrinello molecular dynamics (CPMD) method. Optimized geometries and energetics of free-standing ethanol-CO2 clusters exhibit evidence for a relatively more stable electron donor-acceptor (EDA) complex between these two species rather than a hydrogen-bonded configuration. This fact has also been confirmed by the higher formation rate of the EDA complex in supercritical carbon dioxide-ethanol mixtures. The probability density distribution of CO2 molecules around ethanol in the supercritical state shows two high probability regions along the direction of the lone pairs on the oxygen atom of ethanol. The EDA interaction between ethanol and CO2 as well as that between CO2 molecules themselves leads to significant deviations from linearity in the geometry of the CO2 molecule. The vibrational spectra of carbon dioxide obtained from the atomic velocity correlation functions in the bulk system as well as from isolated complexes show splitting of the nu2 bending mode that arises largely from CO2-CO2 interactions, with ethanol contributing only marginally because of its low concentration in the present study. The stretching frequency of the hydroxyl group of ethanol is shifted to lower frequencies in the bulk mixture when compared to its gas-phase value, in agreement with experiments.  相似文献   

3.
Near-critical CO2 in mesoporous silica studied by in situ FTIR spectroscopy   总被引:2,自引:0,他引:2  
Attenuated total reflection Fourier transform infrared spectroscopy was used to correlate the band shift of the nu2 vibrational band of carbon dioxide with the density of the fluid. Upon adsorption of CO2 on mesoporous silica and a nonporous SiO2 film, additional bands were detected due to interactions of CO2 with SiO2. Near the saturation pressure for the porous samples, the absorbance of the nu2 band increased strongly, which was concluded to be caused by liquidlike CO2 inside the pores. Integration of single-beam-sample-reference spectra between bulk CO2 and CO2 adsorbing on the mesoporous silica coated on one part of the internal reflection element revealed excess adsorption type isotherms with sharp maxima at 21 degrees C. A flatter curve shape could be observed at 25 degrees C, which allowed estimating the pore critical temperature. Moreover, the density of the fluid inside and outside the pores could be compared. Over the investigated ranges of pressure, temperature, and pore size, the results evidenced that the CO2 density was always higher in the silica pores than in the bulk, even under supercritical conditions. This has important consequences on the pressure dependence of dissolution power and diffusivity of fluids in mesoporous solids. An overview is given on the influences of fluid phase behavior in the bulk and in the pores at various conditions on solubility and diffusivity.  相似文献   

4.
Molecular dynamics simulations have been performed to study the potential of mean force (PMF) between passivated gold nanoparticles (NPs) in supercritical CO(2) (scCO(2)). The nanoparticle model consists of a 140 atom gold nanocore and a surface self-assembled monolayer, in which two kinds of fluorinated alkanethiols were considered. The molecular origin of the thermodynamics interaction and the solvation effect has been comprehensively studied. The simulation results demonstrate that increasing the solvent density and ligand length can enhance the repulsive feature of the free energy between the passivated Au nanoparticles in scCO(2), which is in good agreement with previous experimental results. The interaction forces between the two passivated NPs have been decomposed to reveal various contributions to the free energy. It was revealed that the interaction between capping ligands and the interaction between the capping ligands and scCO(2) solvent molecules cooperatively determine the total PMF. A thermodynamic entropy-energy analysis for each PMF contribution was used to explain the density dependence of PMF in scCO(2) fluid. Our simulation study is expected to provide a novel microscopic understanding of the effect of scCO(2) solvent on the interaction between passivated Au nanoparticles, which is helpful to the dispersion and preparation of functional metal nanoparticles in supercritical fluids.  相似文献   

5.
Investigation into volumetric and energetic properties of several atomistic models mimicking carbon dioxide geometry and quadrupole momentum covered the liquid-vapor coexistence curve. Thermodynamic integration over a polynomial and an exponential-polynomial path was used to calculate free energy. Computational results showed that model using GROMOS Lennard-Jones parameters was unsuitable for bulk CO(2) simulations. On the other hand, model with potential fitted to reproduce only correct density-pressure relationship in the supercritical region proved to yield correct enthalpy of vaporization and free energy of liquid CO(2) in the low-temperature region. Except for molar volume at the upper part of the vapor-liquid equilibrium line, the bulk properties of exp-6-1 parametrization of ab initio CO(2) potential were in a close agreement with the experimental results. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1772-1781, 2001  相似文献   

6.
This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and antisolvent to be recovered, thereby rendering it a green solvent process.  相似文献   

7.
Explicit molecular dynamics simulations were applied to a pair of amorphous silica nanoparticles in aqueous solution, with diameter of 4.4 nm and with four different background electrolyte concentrations, to extract the mean force acting between the two silica nanoparticles. Dependences of the interparticle forces on the separation and the background electrolyte concentration were demonstrated. The nature of the interaction of the counterions with charged silica surface sites (deprotonated silanols) was investigated. A "patchy" double layer of adsorbed sodium counterions was observed. Dependences of the interparticle potential of mean force on the separation and the background electrolyte concentration were demonstrated. Direct evidence of the solvation forces is presented in terms of changes of the water ordering at the surfaces of the isolated and double nanoparticles. The nature of the interaction of the counterions with charged silica surface sites (deprotonated silanols) was investigated in terms of quantifying the effects of the number of water molecules separately inside each pair of nanoparticles by defining an impermeability measure. A direct correlation was found between the impermeability (related to the silica surface "hairiness") and the disruption of water ordering. Differences in the impermeability between the two nanoparticles are attributed to differences in the calculated electric dipole moment.  相似文献   

8.
受限条件下CO2-CH4体系的相平衡性质对化工工艺过程的设计具有非常重要的意义.采用Gibbs系综Monte Carlo模拟,对220K下CO2-CH4体系在主体相和受限狭缝中的相平衡性质进行了系统地研究.通过主体相模拟与实验结果比较,验证了流体分子势能参数的合理性;通过改变狭缝壁面原子的能量参数,研究了受限环境对CO2-CH4体系汽液相平衡性质的影响.与主体相相比,在硬壁狭缝中,CO2-CH4体系的露点压力增加,泡点压力降低,压力-组成相图变窄,且体系更容易达到超临界状态;在吸引狭缝中,随壁面原子能量参数的增大,CO2-CH4体系的压力-组成相图上移,临界点处CH4的摩尔分数减小,相图变窄.在体系汽液相总组成相同情况下,硬壁狭缝内体系的汽液相密度均比主体相中小;随壁面原子能量参数增大,气相密度变大、液相密度在CH4的摩尔分数较小时变大而当CH4的摩尔分数达到一定值后反而减小.在体系汽液相总组成相同时,受限环境下的汽化热比主体相的汽化热小且随壁面吸引势的增强越来越小;在主体相和硬壁狭缝中体系的汽化热随CH4含量的增加单调减小,而当壁面势能参数较大时汽化热随CH4含量增加先增大后减小.  相似文献   

9.
Molecular dynamics (MD) simulations of dense carbon dioxide on the amorphous dehydroxylated silica surfaces have been carried out. The adsorption potential surfaces of the silica solids have been obtained in order to evaluate the characteristics of the amorphous surfaces. The atom density profiles, adsorption free energy profiles, surface orientation order parameters, and radial distribution functions for the CO2 molecules have been presented in order to study the effect of the amorphous surfaces on the microscopic interfacial structure properties of the CO2 molecules. The translational diffusion and orientation rotation at silica surfaces have also been investigated. It was observed that there is marked hindrance of the translational diffusion and orientation rotation of CO2 molecules near amorphous silica surfaces.  相似文献   

10.
Steric stabilization and flocculation of colloids with surface-grafted poly(dimethylsiloxane) (PDMS) chains are examined in liquid and supercritical carbon dioxide with and without hexane as a cosolvent. Neither poly(methyl methacrylate) (PMMA) nor silica particles with grafted 10,000 g/mol PDMS could be stabilized in pure CO(2) at pressures up to 345 bar at 25 degrees C and 517 bar at 65 degrees C without stirring. The addition of 15 wt% hexane to CO(2) led to stable dispersions with sedimentation velocities of 0.2 mm/min for 1-2 μm PMMA particles. The critical flocculation pressure of the colloids in the hexane/CO(2) mixture, determined from turbidity versus time measurements, was found to be the same for silica and PMMA particles and was well above the upper critical solution pressure for the PDMS-CO(2) system. The addition of a nonreactive cosolvent, hexane, eliminates flocculation of PMMA particles synthesized through dispersion polymerization in CO(2) with PDMS-based surfactants. Copyright 2000 Academic Press.  相似文献   

11.
Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO2) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T=35 and 80 degrees C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from rho(CO2) approximately 0 to 0.9 gcm3. The intensity of scattering from CO2-saturated Vycor porous glass can be described by a two-phase model which suggests that CO2 does not adsorb on the pore walls and fills the pore space uniformly. In CO2-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO2 is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density approximately 1.07 gcm3, close to the density corresponding to closely packed van der Waals volume of CO2. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction phi3 of the adsorbed phase as a function of the fluid density, and gave phi3 approximately 0.78 in the maximum adsorption regime around rho(CO2) approximately 0.374 gcm3. The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials.  相似文献   

12.
Spherical particles were prepared from poly[2-(perfluorooctyl)ethyl acrylateco-acrylic acid] random copolymers (P(POA-co-AA)) by self-assembly in supercritical carbon dioxide (scCO2). The P(POA-co-AA) copolymers with 9:1, 8:2, 7:3, and 6:4 molar ratios of the POA/AA unit completely dissolved in scCO2, however, the solubility was dependent on the POA/AA ratio. The copolymer with the higher AA content had a lower solubility. The scanning electron microscopy (SEM) observations revealed that the spherical particles were obtained in a heterogeneous state at pressures lower than the cloud point pressure. Dynamic light scattering and 1H NMR studies demonstrated that the copolymers formed random copolymer micelles consisting of the shells of the CO2-philic POA units and the cores of the CO2-phobic AA units and main chains. It was found that the formation of spherical particles could be optimized by the manipulation of the CO2 pressure and temperature for the different compositions of the copolymers.  相似文献   

13.
In the context of carbon geo-sequestration projects, brine-CO(2) interfacial tension γ and brine-CO(2)-rock surface water contact angles θ directly impact structural and residual trapping capacities. While γ is fairly well understood there is still large uncertainty associated with θ. We present here an investigation of γ and θ using a molecular approach based on molecular dynamics computer simulations. We consider a system consisting of CO(2)/water/NaCl and an α-quartz surface, covering a brine salinity range between 0 and 4molal. The simulation models accurately reproduce the dependence of γ on pressure below the CO(2) saturation pressure at 300K, and over predict γ by ~20% at higher pressures. In addition, in agreement with experimental observations, the simulations predict that γ increases slightly with temperature or salinity. We also demonstrate that for non-hydroxylated quartz surfaces, θ strongly increases with pressure at subcritical and supercritical conditions. An increase in temperature significantly reduces the contact angle, especially at low-intermediate pressures (1-10MPa), this effect is mitigated at higher pressures, 20MPa. We also found that θ only weakly depends on salinity for the systems investigated in this work.  相似文献   

14.
共沉淀法制备氧化硅改性的纳米二氧化钛及其性质   总被引:17,自引:1,他引:17  
采用共沉淀法合成了氧化硅改性的具有高比表面积的纳米二氧化钛.氧化硅的添加提高了二氧化钛纳米颗粒的热稳定性能,有效地抑制了纳米二氧化钛的颗粒增长、团聚和锐钛向金红石的晶型转换.光催化降解亚甲基蓝证明,样品具有较高的光催化活性,而且随着氧化硅添加量的增加,光催化活性提高.  相似文献   

15.
We follow the evolution of the H(2)O/CO(2) interface at 300 K from the low pressure limit to near-critical pressures in molecular dynamics simulations using the SPC water and EPM2 carbon dioxide models. The intrinsic structure of the interface is elucidated by accumulating density profiles relative to the fluctuating capillary wave surface. Our main finding is that a carbon dioxide film of increasing density and thickness grows in two stages at the interface while the structure of the water surface barely changes. At low density, the entire film density profile grows linearly with the bulk CO(2) density. This regime continues up to a bulk CO(2) density of roughly 0.00095 ?(-3). At pressures above this point, we observe a distinct second peak in the CO(2) density, along with a tail of excess density that decays exponentially with distance from the interface. The decay length of the exponential tail diverges with increasing CO(2) pressure according to an inverse power law decay. Over the entire range of pressures, the CO(2) film had no detectable effect on the orientational order of the water surface. As expected, when the film of excess CO(2) at the interface grows, we find that the surface tension drops with increasing pressure. This is in qualitative accord with existing measurements, although the rate at which the surface tension falls with increasing pressure according to the SPC and EPM2 models is too small, indicating that the surface excess of CO(2) is underestimated by these models.  相似文献   

16.
《Fluid Phase Equilibria》1998,152(2):299-305
The equilibrium solubilities of dihydroxybenzene isomers pyrocatechol, resorcinol and hydroquinone have been measured in supercritical carbon dioxide using a simple static method. The measurements were performed in the pressure range from 120 to 400 atm at temperatures 35, 45, 55 and 65°C for pyrocatechol and resorcinol and in the pressure range from 120 to 200 atm at temperature 35°C for hydroquinone. The solubility of the isomers in supercritical CO2 was found to vary in the order pyrocatechol>resorcinol≫hydroquinone. The experimental data were correlated by use of the density based model proposed by Chrastil.  相似文献   

17.
Lattice Monte Carlo simulations are used to study the effect of nonionic surfactant concentration and CO2 density on the micellization and phase equilibria of supercritical CO2/surfactant systems. The interaction parameter for carbon dioxide is obtained by matching the critical temperature of the model fluid with the experimental critical temperature. Various properties such as the critical micelle concentration and the size, shape, and structure ofmicelles are calculated, and the phase diagram in the surfactant concentration-CO2 density space is constructed. On increasing the CO2 density, we find an increase in the critical micelle concentration and a decrease in the micellar size; this is consistent with existing experimental results. The variation of the micellar shape and structure with CO2 density shows that the micelles are spherical and that the extension of the micellar core increases with increasing micellar size, while the extension of the micellar corona increases with increasing CO2 density. The predicted phase diagram is in qualitative agreement with experimental phase diagrams for nonionic surfactants in carbon dioxide.  相似文献   

18.
All-atomic molecular dynamics simulations have been performed to study the interfacial structural and dynamical properties of passivated gold nanoparticles in supercritical carbon dioxide (scCO(2)). Simulations were conducted for a 55-atom gold nanocore with thiolated perfluoropolyether as the packing ligands. The effect of solvent density and surface coverage on the structural and dynamical properties of the self-assembly monolayer (SAM) has been discussed. The simulation results demonstrate that the interface between nanoparticle and scCO(2) solvent shows a depletion region due to the preclusion of SAM. The presence of scCO(2) solvent around the passivated Au nanoparticle can lead to an enhanced extension of the surface SAM. Under full coverage, the structure and conformation of SAM are insensitive to the density change of scCO(2) fluid. This simulation results clarify the microscopic solvation mechanism of passivated nanoparticles in supercritical fluid medium and is expected to be helpful in understanding the scCO(2)-based nanoparticle dispersion behavior.  相似文献   

19.
Molecular dynamics simulations of random quaternary mixtures of protein-water-CO2-fluorosurfactants show the self-assembly of reverse micelles in supercritical carbon dioxide where the protein becomes entrapped inside the aqueous pool. Analyses show that the protein native state remains intact in the water pool. This is because of the bulk nature of the enclosed water that provides a suitable environment for the extracted protein. Results from ab initio calculations imply that the existing fluorosurfactants can be made more effective in stabilizing water-in-CO2 microemulsions by a partial hydrogenation in their tails. A Lewis acid-Lewis base interaction among CO2 and the surfactant tails enhances the stability of the aqueous droplets substantially. The study can help accelerate the search for surfactant process for environmentally benign applications in dense CO2.  相似文献   

20.
Swelled plastics in supercritical carbon dioxide provide unique environments for stabilizing palladium and rhodium nanoparticles and for catalytic hydrogenation. Complete hydrogenation of benzene to cyclohexane can be achieved in 10 minutes using the plastic stabilized Rh nanoparticles at 50 degrees C in supercritical CO(2). High efficiency, reusability, and rapid separation of products are some advantages of the plastic stabilized metal nanoparticles for catalytic hydrogenation in supercritical CO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号