首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied how the KrF* formation in the NF3 t Kr*(3P2) reaction depends on the mutual configuration between the orientation of the NF3 molecule and the alignment of the Kr*(3P2, M(J) = 2) atom in the collision frame. The molecular steric opacity function has been determined as a function of the atomic orbital alignment (M'(L)) in the collision frame. The molecular steric opacity function turns out to depend remarkably on M'(L) ; the |M'(L)| = 1 alignment is favorable at the molecular axis direction, whereas the M'(L) = 0 alignment is favorable at the sideways direction with a very poor reactivity at the molecular axis direction. The influence of deformation of the NF3 geometry on the electron affinity has been evaluated by ab initio calculation, and the M'(L) dependent intermolecular potential has been estimated from the interaction potential for the bromine-rare gas system. We propose the "collision-induced harpooning mechanism" as a novel process for the harpooning in which collisional deformation of the NF3 geometry with C(s) symmetry plays an important role as an initiating factor on electron transfer for the formation of NF3(-) due to increasing the electron affinity of NF3 and due to localizing the negative charge on the closest F-atom of NF3(-) anion. All experimental observations can support the collision-induced harpooning mechanism.  相似文献   

2.
The atomic alignment effect has been studied for the dissociative energy transfer reaction of metal carbonyls (Fe(CO)(5), Ni(CO)(4)) with the oriented Ar ((3)P(2), M(J) = 2). The emission intensity from the excited metal products (Fe*, Ni*) has been measured as a function of the atomic alignment in the collision frame. The selectivity of the atomic orbital alignment of Ar ((3)P(2), M(J) = 2) (rank 2 moment, a(2)) is found to be opposite for the two reaction systems; the Fe(CO)(5) reaction is favorable at the Π configuration (positive a(2)), while the Ni(CO)(4) reaction is favorable at the Σ configuration (negative a(2)). Moreover, a significant spin alignment effect (rank 4 moment, a(4)) is recognized only in the Ni(CO)(4) reaction. The atomic alignment effect turns out to be essentially different between the two reaction systems; the Fe(CO)(5) reaction is controlled by the configuration of the half-filled 3p atomic orbital of Ar ((3)P(2)) in the collision frame (L dependence), whereas the Ni(CO)(4) reaction is controlled by the configuration of the total angular moment J (including spin) of Ar ((3)P(2)) in the collision frame (J dependence). As the origin of J dependence observed only in the Ni(CO)(4) reaction, the correlation (and/or the interference) between two electron exchange processes via the electron rearrangements is proposed.  相似文献   

3.
Atomic alignment effect for the CF3* formation in the oriented Ar (3P2, MJ = 2) + CF3H reaction has been investigated at different two CF3H beam conditions: effusive and supersonic beams. The chemiluminescence intensity of CF3* was measured as a function of the magnetic orientation field direction in the collision frame. A significant contribution of rank 4 moment was recognized. The cross-section for each magnetic M'(J) substate in the collision frame, sigma|M'(J)|, was determined to be sigma(|M'(J)|=0):sigma(|M'(J)|=1):sigma(|M'(J)|=2) = 1.00:0.84 +/- 0.02:0.88 +/- 0.02 for the effusive CF3H beam condition. The atomic alignment effect was found to significantly depend on the CF3H beam condition. For the supersonic beam condition, sigma(|M'(J)|=0&1) was changed to be smaller than sigma(|M'(J)|=2).  相似文献   

4.
Steric effect for the formation of N 2 (B, (3)Pi u ) in the energy transfer reaction of Kr ( (3)P 2) + N 2 has been measured using an oriented Kr ( (3)P 2, M J = 2) beam at a collision energy of 0.07 eV. The N 2 (B, (3)Pi u ) emission intensity was measured as a function of the magnetic orientation field direction in the collision frame. A significant atomic alignment effect on the energy transfer probability was observed. This result was compared with that for the formation of N 2 (C, (3)Pi g ) in the Ar ( (3)P 2) + N 2 reaction. Despite the large difference on the energy transfer cross-section, the atomic alignment dependence for Kr ( (3)P 2) + N 2 is found to be analogous to that for Ar ( (3)P 2) + N 2. It is revealed that the configuration of inner 4p (3p) orbital in the collision frame gives an important role for the stereoselectivity on electron transfer process via the curve-crossing mechanism.  相似文献   

5.
The effect of atomic alignment on CN (B2Sigma+) formation has been studied in the reaction of oriented Ar (3P2) with (CX3CN)2 (X = H, D). The reaction cross-section for each magnetic M'(J) substate in the collision frame sigma|M'(J)|(H(D),d) relative to the cross-section sigma0(H,m) in the CH(3)CN reaction was determined to be sigma0(H,d)/sigma|1|(H,d)/sigma|2|(H,d)/sigma0(D,d)/sigma|1|(D,d):/sigma|2|(D,d)= 0.87/1.00/0.98/1.58/1.93/1.78. A notable deuterium isotope effect was observed. In contrast with the monomer reactions, a significant decrease of sigma0(H(D),d) relative to the other cross-sections of sigma|M'(J)|(H(D),d) was observed.  相似文献   

6.
Atomic orbital alignment effect was observed for the CN (B2Sigma+) formation in the reaction of oriented Ar (3P2) with CH3CN (CD3CN). The relative cross-sections for each magnetic MJ' substrate in collision frame sigmaH|MJ'| for CH3CN and sigmaD|MJ'| for CD3CN, were determined to be sigmaH0:sigmaH|1|:sigmaH|2|:sigmaD0:sigmaD|1|:sigmaD|2| = 1.00:0.81:0.84:2.01:1.92:1.87. A significant atomic orbital alignment effect was observed. In addition, a notable deuterium isotope effect was observed on both the cross-section and the atomic orbital alignment effect.  相似文献   

7.
Atomic orientation effect for the CH(3)O(*) formation has been studied for the dissociative energy transfer reaction of oriented Ar ((3)P(2)) with CH(3)OH. The degree of polarization of CH(3)O(*) chemiluminescence was determined as a function of each magnetic M(J) (') substate in the collision frame. A drastic change of the product angular momentum alignment due to atomic orientation was recognized.  相似文献   

8.
Absolute rate coefficients for the gas-phase reactions of ground-state oxygen atoms with CCl(2)=CH(2) (1), (Z)-CHCl=CHCl (2) and CCl(2)=CCl(2) (3) have been measured directly using the fast flow discharge technique. The experiments were carried out under pseudo-first-order conditions with [O((3)P)](0) < [chloroethene](0). The temperature dependences of the reactions of O((3)P) with CCl(2)=CH(2), (Z)-CHCl=CHCl and CCl(2)=CCl(2) were studied in the range 298-359 K. The kinetic data obtained were used to derive the following Arrhenius expressions (in units of cm(3) molecule(-1) s(-1)): k(1) = (1.82 +/- 1.29) x 10(-11) exp[-(12.63 +/- 0.97) x 10(3)/RT], k(2) = (1.56 +/- 0.92) x 10(-11) exp[-(16.68 +/- 1.54) x 10(3)/RT], k(3) = (4.63 +/- 1.38) x 10(-11) exp[-(19.59 +/- 3.21) x 10(3)/RT]. This is the first temperature dependence study of the reactions of O((3)P) atoms with (Z)-CHCl=CHCl and CCl(2)=CCl(2). All the rate coefficients display a positive temperature dependence and pressure independence, which points to the importance of the irreversibility of the addition mechanism for these reactions. The obtained rate coefficients are compared with previous studies carried out mainly at room temperature. The rates of addition of O atoms and OH radicals to the double bond of alkenes at 298 K are related by the expression: log k(OH) = 0.57278 log k(O(3P)) - 4.095. A correlation is presented between the reactivity of chloroethenes toward O atoms and the second-order perturbational term of the frontier molecular orbital theory which carries the contribution of the different atomic orbitals to the HOMO of the chloroethene. To a first approximation, this correlation allows room-temperature rate coefficients to be predicted within +/-25-30% of the measured values.  相似文献   

9.
An alignment effect in the dissociative energy transfer reaction of Ar((3)P(2))+(X(2)O)(n)(X=N,H) was directly measured using an oriented Ar((3)P(2),M(J)=2) beam. The chemiluminescence intensity of N(2)(B,(3)Pi(g)) for (N(2)O)(n) and OH(A,(2)Sigma(+)) for (H(2)O)(n) was measured as a function of the magnetic orientation field direction in the collision frame. The relative reaction cross section for each magnetic substate in the collision frame, sigma(M(J) (') ), was determined. In both the reaction systems, it is observed that the dimer formation significantly enhances the alignment effect and decreases the reactivity, especially for sigma|1| and sigma|2|. A significant contribution of rank 4 moment is recognized in the dimer reaction.  相似文献   

10.
Steric effect for N2(C,3Piu) formation in the energy transfer reaction of Ar(3P2)+N2 was directly measured by using an oriented Ar(3P2,MJ=2) beam at a collision energy of 0.06 eV. The N2(C,3Piu) chemiluminescence intensity was measured as a function of the magnetic orientation field direction in the collision frame. A significant alignment effect on the energy transfer probability was observed. The relative reactivity for each magnetic substate in the collision frame sigma|MJ'|was determined to be sigma|2|:sigma|1|:sigma(0)=0.50:0.60:1.00. It is suggested that the observed steric effect is primarily due to the favorable configuration of the 3p orbital for the efficient overlap with the 2sigma(u) molecular orbital of N(2).  相似文献   

11.
Non-empirical RHF/6-31G* and MP2/6-31G* quantum chemical methods are used to calculate the molecular structure of trichlorophosphazene compounds: Cl3P=NC(CF3)3 (I) and Cl3P=NCCl(CCl3)2 (II). The corresponding geometric parameters obtained from the calculations are compared with X-ray diffraction analysis data reported in the literature. Conformational differences between the molecules of I and II, previously found by X-ray diffraction in the crystals of these compounds, are confirmed by non-empirical calculations of the molecules in the free state. The features of their geometry caused by intramolecular interactions are discussed.  相似文献   

12.
The factors hindering the reorientational motion of the CCl3 group in the isolated CCl3CXClN=CClC6H4NO2-p molecules with X = H and Cl were analyzed based on RHF/6-31G* calculations. Using the published 35Cl NQR data, the intramolecular and lattice contributions to the potential barrier of CCl3 reorientations were compared. The character and magnitude of the hindrances responsible for the barriers to reorientations in these compounds are discussed.  相似文献   

13.
Reaction of the Two-component Systems P(OR)3 ? x(NR2)x (x = 0–3)/CCl4 and P4/CCl4 with HF-Donators The combination of organylammonium fluorides and carbon tetrachloride is a good agent for oxidative fluorination of trivalent phosphorus compounds. As oxidation products [(RO)PF5]? and (RO)2P(O)F are obtained from P(OR)3, (Et2N)2P(O)F and (Et2N)2(EtO)PF2 from P(OEt)(NEt2)2 as well as (Et2N)3PF2 and [(Et2N)3PF]+ from P(NEt2)3. In the system R2NH/CCl4/Et3N · n HF P4 is fast oxidized forming [HPF5]?, R2NH · PF5 and (R2N)2P(O)F. In the case of simultaneous addition of alcohols [(RO)PF5]?, (RO)3PO and (R2N)2P(O)F are formed. The reactions are controlled by the nucleophilic power and the concentration of fluoride, the acidity of the system, and the temperature.  相似文献   

14.
Collisional deactivation of I(2P1/2) by the title compounds was investigated through the use of the time-resolved atomic absorption of excited iodine atoms at 206.2 nm. Rate constants for atomic spin-orbit relaxation by CH3Cl, CH2Cl2, CHCl3, CCl3F, and CCl4 are 3.1±0.3×10−13, 1.28±0.08×10−13, 5.7±0.3×10−14, 3.9±0.4×10−15, and 2.3±0.3×10−15cm3 molecule−1 s−1, respectively, at room temperature (298 K). The higher efficiency observed for relaxation by CH3Cl, CH2Cl2, and CHCl3 reveals a contribution in the deactivation process of the first overtone corresponding to the C(SINGLEBOND)H stretching of the deactivating molecule (which lies close to 7603 cm−1) as well as the number of the contributing modes and certain molecular properties such as the dipole moment. It is believed that, for these molecules, a quasi-resonant (E-v,r,t) energy transfer mechanism operates. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 799–803, 1998  相似文献   

15.
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles.  相似文献   

16.
Reduced-dimensionality quantum reactive scattering calculations for the C(3P) + C2H2 reaction have been carried out in order to understand the product branching dynamics of cyclic-C3H + H and linear-C3H + H. Our model treats only two degrees of freedom but can explicitly describe both of the C3H isomer product channels. The lowest triplet potential energy surface has been obtained by the hybrid density-functional method at the B3LYP/6-31G(d,p) level of theory. The calculated reaction probabilities were found to be dominated by resonance consistent with the complex-formation potential, and the results show that cyclic-C3H is preferentially formed via the cyclic-C3H2 intermediate produced by insertion of C(3P) into the CC bond. We have found that the isomerization from the cyclic-C3H2 to linear-C3H2 intermediate is suppressed by a barrier separating potential wells corresponding to these two intermediates. It has also been found that the energy dependence of the calculated total reaction cross section is in good agreement with the result of crossed molecular beam experiments.  相似文献   

17.
Bis(2-furoinate)triphenyl- and tri-p-tolylantimony and bis(3-niacinate)triphenylanitmony were synthesized by reacting triarylantimony (Ar3Sb; Ar = Ph, p-Tol) with 2-furancarboxylic and 3-pyridinecarboxylic acids in the presence of hydrogen peroxide. According to X-ray diffraction data, Sb atoms have trigonal bipyramidal coordination polyhedra. The Sb–O distances are 2.117(4), 2.137(4) Å; 2.136(2), 2.158(2) Å, and 2.112(1), 2.101(2) Å, the Sb···O distances are 2.866(4), 2.798(4) Å; 2.816(2), 2.774(2) Å, and 3.054(2), 3.168(2) Å, respectively.  相似文献   

18.
Addition of an excess of BunLi to the bis(borano)phosphide complex [Ar*PH(BH3)2]-Li+ 1 (Ar* = 2,4,6-tri-tert-butylphenyl) and subsequent treatment with BH3, gives the anionic complex [Ar*P(BH3)(mu-BH2)2H]-Li+ 2 instead of the expected tris(borano)phosphide dilithium, [Ar*P(BH3)3]2-2Li+ 3.  相似文献   

19.
The title complexes are used as intramolecular cyclization agents to yield under mild conditions and average to good yields 2-azetidinones from variously substituted 3-aminopropanoic acids. The reaction is found to proceed in all examined cases stereospecifically, with one exception. No marked difference with respect to yields and stereospecificity is noted among the four condensation systems.
2-Azetidinone aus 3-Aminopropansäuren und Ph3 P/CCl 4(CBr 4) oder Ph3 P/Br 2(I 2) als Kondensationsmittel
Zusammenfassung Die im Titel angegebenen Systeme wurden als Cyclisationsreagentien eingesetzt, um aus substituierten 3-Aminopropansäuren 2-Azetidinone unter milden Bedingungen und mit durchschnittlichen bis guten Ausbeuten darzustellen. Mit einer Ausnahme läuft die Reaktion stereospezifisch. Bei den vier untersuchten Systemen wurde kein beträchtlicher Unterschied in bezug auf Ausbeute und Stereospezifität festgestellt.
  相似文献   

20.
PX(4) (+)[Al(OR)(4)](-) (X=I: 1 a, X=Br: 1 b) was prepared from X(2), PX(3), and Ag[Al(OR)(4)] [R=C(CF(3))(3)] in CH(2)Cl(2) at -30 degrees C in 69-86 % yield. P(2)X(5) (+) salts were prepared from 2 PX(3) and Ag[Al(OR)(4)] in CH(2)Cl(2) at -30 degrees C yielding almost quantitatively P(2)X(5) (+)[Al(OR)(4)](-) (X=I: 3 a, X=Br: 3 b). The phosphorus-rich P(5)X(2) (+) salts arose from the reaction of cold (-78 degrees C) mixtures of PX(3), P(4), and Ag[Al(OR)(4)] giving P(5)X(2) (+)[Al(OR)(4)](-) (X=I: 4 a, X=Br: 4 b) with a C(2v)-symmetric P(5) cage. Silver salt metathesis presumably generated unstable PX(2) (+) cations from PX(3) and Ag[Al(OR)(4)] (X=Br, I) that acted as electrophilic carbene analogues and inserted into the Xbond;X (Pbond;X/Pbond;P) bond of X(2) (PX(3)/P(4)) leading to the highly electrophilic and CH(2)Cl(2)-soluble PX(4) (+) (P(2)X(5) (+)/P(5)X(2) (+)) salts. Reactions that aimed to synthesize P(2)I(3) (+) from P(2)I(4) and Ag[Al(OR)(4)] instead led to anion decomposition and the formation of P(2)I(5)(CS(2))(+)[(RO)(3)Al-F-Al(OR)(3)](-) (5). All salts were characterized by variable-temperature solution NMR studies (3 b also by (31)P MAS NMR), Raman and/or IR spectroscopy as well as X-ray crystallography (with the exception of 4 a). The thermochemical volumes of the Pbond;X cations are 121 (PBr(4) (+)), 161 (PI(4) (+)), 194 (P(2)Br(5) (+)), 271 (P(2)I(5) (+)), and 180 A(3) (P(5)Br(2) (+)). The observed reactions were fully accounted for by thermochemical calculations based on (RI-)MP2/TZVPP ab initio results and COSMO solvation enthalpy calculations (CH(2)Cl(2) solution). The enthalpies of formation of the gaseous Pbond;X cations were derived as +764 (PI(4) (+)), +617 (PBr(4) (+)), +749 (P(2)I(5) (+)), +579 (P(2)Br(5) (+)), +762 (P(5)I(2) (+)), and +705 kJ mol(-1) (P(5)Br(2) (+)). The insertion of the intermediately prepared carbene analogue PX(2) (+) cations into the respective bonds were calculated, at the (RI-)MP2/TZVPP level, to be exergonic at 298 K in CH(2)Cl(2) by Delta(r)G(CH(2)Cl(2))=-133.5 (PI(4) (+)), -183.9 (PBr(4) (+)), -106.5 (P(2)I(5) (+)), -81.5 (P(2)Br(5) (+)), -113.2 (P(5)I(2) (+)), and -114.5 kJ mol(-1) (P(5)Br(2) (+)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号