首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper demonstrates development of electrophoretically mediated micro analysis (EMMA), for screening protein tyrosine phosphatase (PTP) inhibitors in natural extracts. It is demonstrated that capillary electrophoresis (CE) separation of the substrate and the product allows for using the assay in an on-column format to monitor the reaction without typically used fluorogenic substrates. Michaelis-Menten kinetics parameters calculated based on the EMMA results (Km = 1.2-1.5 microM) were in a good agreement (Km = 1.0-1.5 microM) obtained using an off-line CE functional assay (CE FA). EMMA of PTP titrated with different concentrations of ligand demonstrated the peak-shift phenomenon normally seen in affinity capillary electrophoresis. This feature of EMMA gives an indication of the binding affinity of the ligand in addition to its functional activity, providing another dimension in characterization of the protein-inhibitor interaction. It was demonstrated that simultaneous screening of the primary PTP target and a secondary, counter target (PTP-C) using the EMMA format can be used to prioritize hits based on their specificity.  相似文献   

2.
Chromatography of deoxycholate-solubilized proteins from Paramecium ciliary membranes on heparin-Sepharose resolved three peaks of protein phosphatase activities: one type 2A-like and a type 2C phosphatase in the flow-through fractions, another type 2A-like enzyme in the 0.1 M NaCl eluate and type 1 protein phosphatase in the 0.5 M NaCl eluate. The differential sensitivity of the two type 2A-like phosphatases to heparin and protamine further substantiated the existence of distinct isozymes. Once solubilized, none of these ciliary phosphatases required detergent to remain soluble. The molecular mass as determined by chromatography on Superose 6 was in the range 30,000-45,000 dalton for all four protein phosphatases.  相似文献   

3.
Resonance Rayleigh scattering (RRS) has been explored as a detection (RRSD) technique for capillary electrophoresis (CE) or flow injection analysis (FIA) of inorganic ions. The detection was achieved through a scattering probe of ion-association complex formed from rhodamine B (Rh B) and iodine. The probe scatters strongly at 630 nm when oxidants such as Cr(2)O(7)(2-), MnO(4)(-) and ClO(-) present in a mixed solution of Rh B and iodide. The scattering disappears once iodine is reduced by reductants. Oxidant or reductant species in a sample can thus be detected by positive or negative RRS signal. To verify the RRSD, FIA-RRSD was first constructed and continuous measurement of testing samples containing Cr(2)O(7)(2-), MnO(4)(-) and/or ClO(-) was performed. The detection limits reached a level of decade nM and a linear range was found between peak height and concentration at the range of 0.255-2.04microM for Cr(2)O(7)(2-), 0.158-3.16microM for MnO(4)(-), and 1.18-9.43microM for ClO(-), with linear regression coefficients of all above 0.99. The run-to-run relative standard deviation of peak height was less than 3% (n=6). CE-RRSD was then set up and studied, using a capillary of 75microm i.d.x33cm filled with a running buffer of 50mM citrate and 25mM Tris (pH 3.32) and worked under -12kV at room temperature. The CE eluent was at-line conducted into a stream of rhodamine B and iodine flowing inner a wide tube by plugging the capillary outlet into the wide tube. Different mixtures prepared from Cr(2)O(7)(2-), MnO(4)(-) and ClO(-) were successfully separated and detected by the CE-RRSD.  相似文献   

4.
CE, long a staple in analytical chemistry for molecular separations, has recently been adapted for separating heterogeneous mixtures of microbial cells based on intrinsic differences in cell morphology and surface charge. In this application, CE enables effective separations of both relatively broad categories of cells, as well as of more similar cell types. As a phenotypic approach, CE may be less applicable to certain populations, including those comprised of pleiomorphic cells or chain-forming cells, where differences in cell size, shape, or chain length may lead to broad, "unfocusable" distributions in cell surface charge. At the other end of the spectrum, closely related species having similar surface charge profiles may not be separable via CE alone. Successful combination of microbial CE with a compatible method for generating cell-specific signals could address these limitations, increasing the diagnostic power of this approach. Fluorescence in situ hybridization (FISH) is a rapid molecular technique for fluorescence-based labeling of whole target cells. In this work, we combined a simple CE-based presence/absence test with FISH to develop a bacterial detection assay having an additional "layer" of molecular specificity. Using this approach, we were able to differentiate Salmonella Typhimurium from Escherichia coli in mixed populations via CE. Both hybridizations and CE run times were short (10-15 min), bacterial populations were highly focused ( approximately 2-3 s peak width) and there was no need for a posthybridization wash step. As few as three injected cells of S. Typhimurium were detected against a background of approximately 300 injected E. coli cells, suggesting the possibility for single-cell detection of pathogens using this technique. This proof of concept study highlights the potential of CE-FISH as a promising new tool for molecular detection of specific bacterial cells within mixtures of closely related, physiologically inseparable populations.  相似文献   

5.
Human glutathione transferase A1-1 (hGST A1-1) can be reengineered by rational design into a catalyst for thiolester hydrolysis with a catalytic proficiency of 1.4 x 10(7) M(-1). The thiolester hydrolase, A216H that was obtained by the introduction of a single histidine residue at position 216 catalyzed the hydrolysis of a substrate termed GSB, a thiolester of glutathione and benzoic acid. Here we investigate the substrate requirements of this designed enzyme by screening a thiolester library. We found that only two thiolesters out of 18 were substrates for A216H. The A216H-catalyzed hydrolysis of GS-2 (thiolester of glutathione and naphthalenecarboxylic acid) exhibits a k(cat) of 0.0032 min(-1) and a KM of 41 microM. The previously reported catalysis of GSB has a k(cat) of 0.00078 min(-1) and KM of 5 microM. The k(cat) for A216H-catalyzed hydrolysis of GS-2 is thus 4.1 times higher than for GSB. The catalytic proficiency (k(cat)/KM)/k(uncat) for GS-2 is 3 x 10(6) M(-1). The promiscuous feature of the wt protein towards a range of different substrates has not been conserved in A216H but we have obtained a selective enzyme with high demands on the substrate.  相似文献   

6.
The potential of capillary electrophoresis combined with mass spectrometry for the simultaneous determination of two herbicides (glyphosate and glufosinate) and their metabolites (aminomethylphosphonic acid and methylphosphinicopropionic acid) as the native species is demonstrated utilising a simple microelectrospray interface. The interface uses the voltage applied to the CE capillary to drive separation and generate the electrospray, avoiding sample dilution associated with the use of a sheath liquid interface. The chemistry of the internal walls of the capillary has a marked influence on peak shape, and appropriate choice is essential to successful operation of the interface. A linear polyacrylamide coated capillary, which has no electroosmotic flow, gave best reproducibility, with precision of migration time and peak area in the range 1-2 and 7-12% RSD, respectively, for the four analytes. Limits of detection, low-pg on-column, are substantially better than for previous methods and calibration curves over the range 1-100 microM have R2 values greater than 0.97. The observed concentration limit of detection for glyphosate in water is 1 microM and for a water-acetone extract of wheat is 2.5 microM, allowing the underivatised herbicide to be detected at 10% of the maximum residue limit in wheat.  相似文献   

7.
Monoclonal antibodies (MoAb) to the alkaline phosphatase of Escherichia coli were produced from spleen cells of BALB/c mice primed with purified alkaline phosphatase of E. coli and SP2O/Ag-14 myeloma cells. Five stable clones were established. They all produced antibodies which reacted by enzyme-linked immunosorbent assay (ELISA) with alkaline phosphatase of all E. coli (25 strains) independently of their origin (drinking water, saline water, surface water, faecal or clinical origin), and with that of four Shigella species (7 strains) tested. Four of these MoAb gave a positive reaction with 52 % (MoAb 4G10), 73 % (MoAb 4F8, MoAb 4G6) and 89 % (MoAb 3C8) of 14 other bacterial species (30 strains) studied, while one (MoAb 2E5) did not react with alkaline phosphatase of these unrelated bacterial strains and thus appeared specific for E. coli and Shigella species. This MoAb was still detectable in ascitic fluids at 1/500,000 in ELISA, and detected all E. coli strains in an indirect immunofluorescence assay at 1/100. It could therefore be used as a reagent for routine detection of E. coli in drinking water, food or clinical specimens.  相似文献   

8.
With a growing interest in new areas of bioanalytical research such as metabolome analysis, the development of sensitive capillary electrophoresis (CE) methods to analyze sub-microM concentrations of analytes in biological samples is required. In this report, the application of CE with sweeping by borate complexation is used to analyze a group of seven pyridine and adenine nucleotide metabolites derived from bacteria Bacillus subtilis cell extracts. Nanomolar (nM) detectability of analytes by CE with UV photometric detection is achieved through effective focusing of large sample plug (approximately 10% of capillary length) using sweeping by borate complexation method, reflected by a limit of detections (S/N = 3) of about 2 x 10(-8) M. Changes in metabolites concentrations were observed in cell extracts when using either glucose or malate as the carbon source in the culture medium. Concentration of pyridine and adenine nucleotides in cell extracts varied widely from 78.6 (+/-7.6) microM for nicotinamide-adenine dinucleotide in malate to 0.66 (+/-0.12) microM for nicotinamide-adenine dinucleotide phosphate in glucose culture medium. Concentrations of metabolites in a single cell were also estimated at millimolar (mM) level. The method was validated in terms of linearity, sensitivity and reproducibility. The application of CE by sweeping borate complexation allows for sensitive and reproducible analyses of nucleotide metabolites in complex biological samples such as bacteria cell extracts.  相似文献   

9.
Sun X  Niu Y  Bi S  Zhang S 《Electrophoresis》2008,29(13):2918-2924
A novel method to detect ascorbic acid (AA) in individual rat hepatocyte cells was developed by combining CE with electrochemiluminescence (ECL) based on tris(2,2'-bipyridine) ruthenium(II) (Ru(bpy)(3)2+). A single cell, followed by 0.1% SDS as cell lysis solution, was injected into the inlet of the separation capillary by electromigration. After optimizing the analytical conditions, the RSDs of migration time and peak height were 0.38% and 2.6% for 1.0x10(-5) M AA (n=10), respectively. The linear range of AA was from 1.0x10(-8) to 5.0x10(-5) M with a correlation coefficient of 0.9979 and the LOD (S/N=3) was estimated to be 1.0x10(-8) M. This method has been successfully applied to determine AA in single rat hepatocytes and the amount of AA in seven rat hepatocytes ranged from 16 to 62 fmol. The above results demonstrated that CE coupled with ECL is convenient, sensitive, and will become an attractive alternative method for single-cell analysis.  相似文献   

10.
A hyphenated technique was developed for high-throughput speciation analysis by on-line coupling of flow injection (FI), miniaturized capillary electrophoresis (CE) and atomic fluorescence spectrometry (AFS). Two interfaces were used to couple all three systems: the first to couple FI and CE and the second to couple miniaturized CE and AFS. The first interface was a modified flow through chamber, connected to the FI valve with a piece of PTFE tube (0.1mm i.d.x 20 cm long). The capillary outlet was coupled to the AFS by using the second concentric "tube-in-tube" interface. Split sampling was achieved in the electrokinetic mode. Inorganic mercury (Hg(II)) and methylmercury (MeHg(I)) were taken as model analytes to demonstrate the performance of the developed hyphenated technique. A volatile species generation (VSG) technique was employed to convert the analytes from the CE effluent into their respective volatile species. Baseline separation of Hg(II) and MeHg(I) was achieved by CE in a 50 microm i.d.x 8 cm long capillary at 3.0 kV within 60s. The precisions (RSD, n=12) were in the range of 0.7-0.9% for migration time, 3.8-4.2% for peak area, and 2.1-3.5% for peak height. The detection limits were 0.1 and 0.2 microgmL(-1) (as Hg) for Hg(II) and MeHg(I) with a sample throughput of 60 samples h(-1). The recoveries of both mercury species in the water samples studied were in the range of 93-106%.  相似文献   

11.
Li Y  Jiang Y  Yan XP 《Electrophoresis》2005,26(3):661-667
Capillary electrophoresis (CE) was directly interfaced to flame-heated furnace atomic absorption spectrometry (FHF-AAS) via a laboratory-made thermospray interface for nanoliter trace element speciation. The CE-FHF-AAS interface integrated the superiorities of stable CE separation, complete sample introduction, and continuous vaporization for AAS detection without the need of extra external heat sources and any post-column derivation steps. To demonstrate the usefulness of the developed hybrid technique for speciation analysis, three environmentally significant and toxic forms of methylmercury (MeHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) were taken as model analytes. Baseline separation of the three mercury species was achieved by CE in a 60 cm long x 75 microm inner diameter fused-silica capillary at 20 kV and using a mixture of 100 mM boric acid and 10% v/v methanol (pH 8.30) as running electrolyte. The precision (relative standard deviation, RSD, n = 7) of migration time, peak area and peak height for the mercury species at 500 microg x L(-1) (as Hg) level were in the range of 0.9-1.2%, 1.5-1.9%, and 1.4-2.0%, respectively. The detection limit (S/N = 3) of three mercury species was 3.0 +/- 0.15 pg (as Hg), corresponding to 50.8 +/- 2.4 microg x L(-1) (as Hg) for 60 nL sample injection, which was almost independent on specific mercury species. The developed hybrid technique was successfully applied to the speciation analysis of mercury in a certified reference material (DORM-2, dogfish muscle).  相似文献   

12.
Ban E  Choi OK  Ryu JC  Yoo YS 《Electrophoresis》2001,22(11):2217-2221
Due to its high resolving power and diverse application range, capillary electrophoresis (CE) has been successfully applied to the analysis of carbohydrates. In this paper, a method for the determination of high-molecular chitosan (Mr 200,000) using CE is presented. We studied the optimal condition of buffer pH and type, and column type for determination of chitosan. Optimal CE performance was found when employing 100 mM triethylamine (TEA)-phosphate buffer, pH 2.0 and untreated fused-silica capillary (50 microm x 27 cm) for the chitosan analysis. Under optimum conditions, excellent linear responses were obtained in the concentration range of 1.25-20 microM, with a linear correlation coefficient of 0.9983. The standard deviations of the migration time and peak area were found to be 2.5 and 6.4%, respectively. This method could be readily applied to chitosan determination in real biological samples and commercial products.  相似文献   

13.
The increasing numbers of cases of antibiotic resistance among pathogenic bacteria such as Vibrio species poses a major problem to the food and aquaculture industries, as most antibiotics are no longer effective in controlling pathogenic bacteria affecting these industries. Therefore, this study was carried out to assess the antibacterial potentials of crude aqueous and n-hexane extracts of the husk of Cocos nucifera against some selected Vibrio species and other bacterial pathogens including those normally implicated in food and wound infections. The crude extracts were screened against forty-five strains of Vibrio pathogens and twenty-five other bacteria isolates made up of ten Gram positive and fifteen Gram negative bacteria. The aqueous extract was active against 17 of the tested bacterial and 37 of the Vibrio isolates; while the n-hexane extract showed antimicrobial activity against 21 of the test bacteria and 38 of the test Vibrio species. The minimum inhibitory concentrations (MICs) of the aqueous and n-hexane extracts against the susceptible bacteria ranged between 0.6-5.0 mg/mL and 0.3-5.0 mg/mL respectively, while the time kill study result for the aqueous extract ranged between 0.12 Log?? and 4.2 Log?? cfu/mL after 8 hours interaction in 1 x MIC and 2 x MIC. For the n-hexane extract, the log reduction ranged between 0.56 Log?? and 6.4 Log?? cfu/mL after 8 hours interaction in 1 x MIC and 2 x MIC. This study revealed the huge potential of C. nucifera extracts as alternative therapies against microbial infections.  相似文献   

14.
The surface enhanced Raman scattering (SERS) of a number of species and strains of bacteria obtained on novel gold nanoparticle (approximately 80 nm) covered SiO(2) substrates excited at 785 nm is reported. Raman cross-section enhancements of >10(4) per bacterium are found for both Gram-positive and Gram-negative bacteria on these SERS active substrates. The SERS spectra of bacteria are spectrally less congested and exhibit greater species differentiation than their corresponding non-SERS (bulk) Raman spectra at this excitation wavelength. Fluorescence observed in the bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. Despite the field enhancement effects arising from the nanostructured metal surface, this fluorescence component appears "quenched" due to an energy transfer process which does not diminish the Raman emission. The surface enhancement effect allows the observation of Raman spectra of single bacterial cells excited at low incident powers and short data acquisition times. SERS spectra of B. anthracis Sterne illustrate this single cell level capability. Comparison with previous SERS studies reveals how the SERS vibrational signatures are strongly dependent on the morphology and nature of the SERS active substrates. The potential of SERS for detection and identification of bacterial pathogens with species and strain specificity on these gold particle covered glassy substrates is demonstrated by these results.  相似文献   

15.
The separation and detection of common mono- and disaccharides by capillary electrophoresis (CE) with contactless conductivity detection (CCD) is presented. At high values of pH, the sugars are converted to anionic species that can be separated by CE and indirectly detected by CCD. The main anionic species present in the running electrolytes are hydroxide and phosphate, which have greater mobility than the ionized sugars, and, thus, the indirect detection is possible. The method was applied to analysis of glucose, fructose, and sucrose in soft drinks, isotonic beverages, fruit juice, and sugarcane spirits. Galactose was used as internal standard in all cases. Plate numbers range from ca. 70,700 to 168,200 and the limits of detection from 13 to 31 microM.  相似文献   

16.
Iqbal J  Burbiel JC  Müller CE 《Electrophoresis》2006,27(12):2505-2517
Fast and convenient CE assays were developed for the screening of adenosine kinase (AK) inhibitors and substrates. In the first method, the enzymatic reaction was performed in a test tube and the samples were subsequently injected into the capillary by pressure and detected by their UV absorbance at 260 nm. An MEKC method using borate buffer (pH 9.5) containing 100 mM SDS (method A) was suitable for separating alternative substrates (nucleosides). For the CE determination of AMP formed as a product of the AK reaction, a phosphate buffer (pH 7.5 or 8.5) was used and a constant current (95 microA) was applied (method B). The methods employing a fused-silica capillary and normal polarity mode provided good resolution of substrates and products of the enzymatic reaction and a short analysis time of less than 10 min. To further optimize and miniaturize the AK assays, the enzymatic reaction was performed directly in the capillary, prior to separation and quantitation of the product employing electrophoretically mediated microanalysis (EMMA, method C). After hydrodynamic injection of a plug of reaction buffer (20 mM Tris-HCl, 0.2 mM MgCl2, pH 7.4), followed by a plug containing the enzyme, and subsequent injection of a plug of reaction buffer containing 1 mM ATP, 100 microM adenosine, and 20 microM UMP as an internal standard (I.S.), as well as various concentrations of an inhibitor, the reaction was initiated by the application of 5 kV separation voltage (negative polarity) for 0.20 min to let the plugs interpenetrate. The voltage was turned off for 5 min (zero-potential amplification) and again turned on at a constant current of -60 microA to elute the products within 7 min. The method employing a polyacrylamide-coated capillary of 20 cm effective length and reverse polarity mode provided good resolution of substrates and products. Dose-response curves and calculated K(i) values for standard antagonists obtained by CE were in excellent agreement with data obtained by the standard radioactive assay.  相似文献   

17.
A number of aromatic substrates were evaluated for their ability to detect tyrosine phosphatase and serine/threonine phosphatase activity. Results demonstrated that the fluorinated coumarin DiFMUP is the most sensitive substrate for detecting LAR and PP-2A activity. Using this substrate, selective high-throughput screening assays for serine/threonine and tyrosine phosphatases were developed. Specific inhibitor cocktails were added to each assay to limit the activity of other phosphatases. LAR, CD-45, and PTP-1B all rapidly hydrolyze DiFMUP in the tyrosine phosphatase assay. The activity of non-tyrosine phosphatases is less than 6% of the LAR activity. PP-1 and PP-2A are highly active in the serine/threonine phosphatase assay. Inhibition of LAR and PP-2A in these assays is demonstrated using known inhibitors. Both of these assays are sensitive, robust, kinetic assays that can be used to quantify enzyme activity.  相似文献   

18.
Gao P  Xu G  Shi X  Yuan K  Tian J 《Electrophoresis》2006,27(9):1784-1789
The rapid detection of pathogenic bacteria is extremely important in biotechnology and clinical diagnosis. CE has been utilized in the field of bacterial analysis for many years, but to some extent, simultaneous separation and identification of certain microbes from complex samples by CE coupled with UV detector is still a challenge. In this paper, we propose a new strategy for rapid separation and identification of Staphylococcus aureus (S. aureus) in bacterial mixtures by means of specific mAb-coated latex coupled with CZE. An appropriate set of conditions that selectively isolated S. aureus from the microorganisms Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were established. S. aureus could be differentiated from the others by unique peaks in the electropherograms. The validity was also confirmed by LIF with antibodies specific to both the latex and the microbial cells. The LOD is as low as 9.0 x 10(5) colony forming unit/mL. We have also utilized this technology to identify S. aureus in a stool sample coming from a healthy volunteer spiked successfully with S. aureus. This CZE-UV technique can be applied to rapid diagnosis of enteritis caused by S. aureus or other bacterial control-related fields needing rapid identification of target pathogens from microbial mixtures. In theory, this method is suitable for the detection of any bacterium as long as corresponding bacterium-specific antibody-coated latex is available.  相似文献   

19.
Chang SY  Chiang HT 《Electrophoresis》2002,23(17):2913-2917
Capillary electrophoresis (CE) with indirect fluorescence detection was used to analyze selenium (selenite, selenate, selenomethionine, and selenocystine) and antimony (antimonite and antimonate) compounds. The separation was achieved by CE in 6 min with a 1.2 mM fluorescein solution at pH 9.5. Fluorescein also functioned as a background fluorophore for the indirect detection of these nonfluorescent species. Linearity of more than two orders of magnitude was generally obtained. Precision of migration times and peak areas was less than 1.0% and 7.2%, respectively. The concentration limits of detection (CLODs) was in the microM range. The detection sensitivity was generally dependent upon the transfer ratio (TR, defined as the number of moles of fluorescein ions displaced by one mole of analyte ions) of each species.  相似文献   

20.
Xu Y  Chen S  Feng X  Du W  Luo Q  Liu BF 《Electrophoresis》2008,29(3):734-739
Multiphoton-excited fluorescence (MPEF) is a complementary and useful mode of LIF detection in CE with advantages of ultra-low mass detectability and spectral excitability, but it is currently quite limited by its end-column configuration. In this article, we demonstrate a novel strategy of on-column schemes that can greatly facilitate MPEF detection in CE. FITC-labeled amine species were used as the model samples for the evaluation and comparison of those detection scenarios. By using the square capillary instead of the conventional cylindrical one, the on-column MPEF could be readily achieved, with detection sensitivity of 0.72 microM that was comparable with the end-column mode. However, this strategy unfavorably reduced separation efficiency. The theoretical plate number on averaging all the sample peaks was significantly decreased from 283,000 to 19,000/m. To minimize such an influence, a short square capillary acting as an on-column MPEF detection cell was then mounted to a long cylindrical capillary responsible for the CE separation. Results indicated that both high separation efficiency (240,000/m) and better detectability (0.42 microM) were realized simultaneously by using this binary-capillary configuration. Quantitative analysis was performed under the optimized detector configuration and revealed a linear dynamic range of 2 orders of magnitude, with mass detection limit down to the mid-yottomole level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号