首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
Calcium hydroxide forms unstable reactive nanoparticles that are stabilized when they are dispersed in ethylene glycol or 2-propanol. The aggregation behavior of these particles was investigated by contrast-variation small-angle neutron scattering (SANS), combined with small-angle X-ray scattering (SAXS). Nanoparticles on the order of 100 nm were found to aggregate into mass-fractal superstructures in 2-propanol, while forming more compact agglomerated aggregates with surface fractal behavior in ethylene glycol. Commensurate specific surface areas evaluated at the Porod limit were more than an order of magnitude greater in 2-propanol (approximately 200 m2.g(-1)) than in ethylene glycol (approximately 7 m2.g(-1)). This profound microstructural evolution, observed in similar solvents, is shown to arise from competitive solvent adsorption. The composition of the first solvent layer on the particles is determined over the full range of mixed solvent compositions and is shown to follow a quantifiable thermodynamic equilibrium, determined via contrast-variation SANS, that favors ethylene glycol over 2-propanol in the surface layer by about 1.4 kJ.mol(-1) with respect to the bulk solvent composition.  相似文献   

2.
Perfluorosulfonic acid ionomer (PFSA, specifically Nafion at EW = 975 g/mol) was visualized at the single molecule level using atomic force microscopy (AFM) in liquid. The diluted commercial Nafion dispersion shows an apparent M(w) = 1430 kg/mol and M(w)/M(n) = 3.81, which is assigned to chain aggregation. PFSA aggregates, imaged on mica and HOPG during adsorption from EtOH-H(2)O solvent at pH(e) 3.0 (below isoelectric point), showed a stable, segmented rod-like conformation. This structure is consistent with earlier NMR, SAXS/SANS, and TEM results that support a stiff helical Nafion conformation with long persistence length, a sharp solvent-polymer interface, and an extension of the sulfonated side chain into solution. Adsorption of Nafion structures on HOPG was observed at even higher pH(e) from EtOH due to screening of the repulsive electrostatic interaction in lower dielectric constant solvent, while the chain adopted an expanded coil conformation. These measurements provided direct evidence of the chain aggregation in EtOH-H(2)O solution and revealed their equilibrium conformations for adsorption on two model surfaces, highly ordered pyrolitic graphite (HOPG) and mica. The commercial Nafion dispersion was autoclaved at 0.10% w/w in nPrOH/H(2)O = 4:1 v/v solvent at 230 °C for 6 h to give a single-chain dispersion with M(w) = 310 kg/mol and M(w)/M(n) = 1.60. The autoclaved chains adopt an electrostatically stabilized compact globule conformation as observed by AFM imaging of the single PFSA molecules after rapid deposition on mica and HOPG at a low surface coverage.  相似文献   

3.
The deposition of metal nanostructures (wires and particles) on a graphite surface from an aqueous electrolyte solution was induced by galvanic displacement, via the oxidation of insoluble crystals of a ferrocene derivative (either n-butyl ferrocene or decamethyl ferrocene) present on the same substrate. Micron-to-millimetre-scale crystallites of decamethyl ferrocene were deposited on the graphite surface by evaporation from a solution of a nonpolar solvent (1,2-dichloroethane). Immersion of this modified surface into a dilute solution of a metal ion (e.g., CuII, AgI, PdII, PtII and others) caused the deposition of metal nanoparticles at step edges present on the graphite surface. The reducing equivalents required for the metal deposition process are provided by oxidation of the ferrocene derivative on the surface, as directly evidenced by elemental analysis and chronoamperometric experimental data presented here.  相似文献   

4.
Micelles of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-PVP-PEO) were studied in acidic aqueous solutions by static and dynamic light scattering, alkalimetric titration, fluorescence correlation spectroscopy, and after deposition on a mica surface by atomic force microscopy. The PS-PVP-PEO micelles prepared by dialysis in ternary 1,4-dioxane-methanol-acidic water mixtures have a very low association number and show a strong tendency to form aggregates. The aggregation, which is promoted at low pH, seems to be fully reversible. Possible mechanisms of the aggregation are discussed. Atomic force microscopy scans of PS-PVP-PEO micelles deposited on a mica surface reveal the formation of micellar aggregates and support the general concept of aggregation upon changes in conditions and deterioration of the stability of small micelles.  相似文献   

5.
6.
Textured surfaces consisting of nanometer- to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution-cast onto silica. The particle textured ionomer surfaces were prepared by either spin-coating or solution-casting ionomer solutions at controlled evaporation rates. The effects of the solvent used to spin-coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation on the surface morphology of cast films were investigated. The surface morphologies were consistent with a spinodal decomposition mechanism, where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted separation from the surface even after annealing at 120 °C for 1 week. The water contact angles on as-prepared surfaces were relatively low, ~90°, due to the polar groups in the ionomer, but when the surface was modified by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~109° on smooth surfaces and up to ~140° on the textured surfaces. Although the surfaces were hydrophobic, the contact angle hysteresis was relatively high and water droplets stuck to these surfaces even when the surface was turned upside down.  相似文献   

7.
Superparamagnetic colloids have a great practical interest for their applications to processes ranging from biomedicine to environmental waste and pollutants removal. A fast and efficient separation of these particles from the solvent constitutes a key step in the practical implementation of this technology. Recent experiments show fast magnetophoretic separation using relatively small magnetic gradients and high magnetic fields. The mechanism underlying this fast separation was shown to be the reversible aggregation of the magnetic beads induced by the external field. In this paper, we analyze theoretically the physicochemical conditions under which reversible aggregation can be typically achieved, the timescale at which aggregates form, and their shape. In the case of colloids stabilized electrostatically, for reasonable surface potentials (approximately −70 mV), we find that the interaction potential between two superparamagnetic particles displays a barrier with a minimum so that reversible aggregates can form. We also show that the aggregation of particles is quite fast (typically less than a second for usual concentrations) and that lateral aggregation is more energetically stable than tip-to-tip aggregation for long chains (larger than 14 microspheres). This is consistent with experimental observations and very relevant for a fast magnetophoresis since thick aggregates move faster than thin ones.  相似文献   

8.
Many false positives in early drug discovery owe to nonspecific inhibition by colloid-like aggregates of organic molecules. Despite their prevalence, little is known about aggregate concentration, structure, or dynamic equilibrium; the binding mechanism, stoichiometry with, and affinity for enzymes remain uncertain. To investigate the elementary question of concentration, we counted aggregate particles using flow cytometry. For seven aggregate-forming molecules, aggregates were not observed until the concentration of monomer crossed a threshold, indicating a "critical aggregation concentration" (CAC). Above the CAC, aggregate count increased linearly with added organic material, while the particles dispersed when diluted below the CAC. The concentration of monomeric organic molecule is constant above the CAC, as is the size of the aggregate particles. For two compounds that form large aggregates, nicardipine and miconazole, we measured particle numbers directly by flow cytometry, determining that the aggregate concentration just above the CAC ranged from 5 to 30 fM. By correlating inhibition of an enzyme with aggregate count for these two drugs, we determined that the stoichiometry of binding is about 10,000 enzyme molecules per aggregate particle. Using measured volumes for nicardipine and miconazole aggregate particles (2.1 x 10(11) and 4.7 x 10(10) A(3), respectively), computed monomer volumes, and the observation that past the CAC all additional monomer forms aggregate particles, we find that aggregates are densely packed particles. Finally, given their size and enzyme stoichiometry, all sequestered enzyme can be comfortably accommodated on the surface of the aggregate.  相似文献   

9.
We study the self-assembly of symmetric star-like block copolymers (A(x))(y)(B(x))(y)C in dilute solution by using Brownian dynamics simulations. In the star-like block copolymer, incompatible A and B components are both solvophobic, and connected to the center bead C of the polymer. Therefore, this star-like block copolymer can be taken as a representative of soft and deformable Janus particles. In our Brownian dynamics simulations, these "soft Janus particles" are found to self-assemble into worm-like lamellar structures, loose aggregates and so on. By systematically varying solvent conditions and temperature, we build up the phase diagram to illustrate the effects of polymer structure and temperature on the aggregate structures. At lower temperatures, we can observe large worm-like lamellar aggregates. Upon increasing the temperature, some block copolymers detach from the aggregate; this phenomenon is especially sensitive for the polymers with less arms. The aggregate structure will be quite disordered when the temperature is high. The incompatibility between the two parts in the star-like block copolymer also affects the self-assembled structures. We find that the worm-like structure is longer and narrower as the incompatibility between the two parts is stronger.  相似文献   

10.
We have simulated the structure and aggregation kinetics of sodium dodecyl sulfate (SDS) and dodecane (C 12) on a graphite surface in the presence of point and line defects. We find that while vacancies do not affect the orientational bias of the molecules, they interfere with aggregate formation. Specifically, they disrupt the formation of extended aggregates. Line defects in the form of surface steps, on the other hand, tend to localize the aggregates in their vicinity and induce specific orientations along the step edges. We demonstrate that this orientational bias can be tuned by manipulating the terrace widths. These results suggest that extended defects could be employed to localize and orient surfactant aggregates on the basal plane of graphite, thus providing a means to create patterned aggregate domains.  相似文献   

11.
The assembly of imidazole‐functionalized phenanthroline‐strapped zinc porphyrins (ZnPorphen) with alkyl or polyethylene glycol (PEG) side chains was studied in solution and by AFM after casting on highly oriented pyrolytic graphite (HOPG) or mica. The nature of the solvent and its evaporation time influenced the morphology of the objects observed. On HOPG, short rods of about 100 nm were observed after fast evaporation of solutions of the alkyl derivatives in CHCl3, THF, or pyridine, whereas islands of aligned rows of longer wires were obtained from methylcyclohexane (MCH). Slow evaporation of MCH led to a three‐dimensional assembly. The PEG porphyrin assembled into short wires on HOPG or fibers on mica after slow evaporation of solutions in THF. This study shows the role of surface–molecule interactions in the interfacial assembly of ZnPorphen derivatives and contributes to understanding the parameters that control their noncovalent assembly into molecular wires on a surface.  相似文献   

12.
Molecular dynamics simulations of sodium dodecyl sulfate (SDS) molecules on a graphite surface are presented. The simulations were conducted at low and high surface coverage to study aggregation at the water/graphite interface. Results showed that at low surface coverage, the SDS molecules form hemicylindrical aggregates, in agreement with AFM experiments, whereas at high surface coverage, the surfactants form full cylinders. The latter aggregates have not been reported in systems of SDS on hydrophobic substrates, such as graphite. The unexpected results are explained in terms of a water layer adsorbed at the solid surface which was the responsible for the formation of these aggregates. Moreover, the SDS tails in the full cylindrical configuration became straighter than those of the hemicylindrical aggregate. Hydrogen bond formation between water and surfactant head groups was also studied, and it was found that they did not depend on the surfactant concentration.  相似文献   

13.
The deposition of PS-PVPH+ polymer micelles from a pH 1 aqueous solution onto Si wafers has been studied using a simple dip-coating technique. It has been found that the rate of evaporation of the solvent and the rate of withdrawal have a considerable influence on the density and ordering of the adsorbed micelles. The highest density and degree of ordering (as judged by the 2D pair correlation function) is achieved when solvent evaporation dominates the deposition process, but a fairly homogeneous distribution of polymer micelles can be achieved over a distance of at least 3-4 mm by controlling the solvent evaporation rate and the rate of substrate withdrawal. We did not observe any significant effect of added KCl (up to 0.1 M) during the deposition process or soaking in 1 M KCl after deposition. The attachment of these micelles is quite robust, as they cannot be washed off in pH 1 water (with or without KCl) without significant mechanical assistance. However, we did find that the micelles are rather easily caused to dewet and partially aggregate under the influence of 65 degrees C water vapor.  相似文献   

14.
In this work atomic force microscopy (AFM) was applied to study the wettability of mica and graphite modified with surfactant dodecyltrimethylammonium bromide (DTAB) at varying DTAB concentrations (below the cmc) and adsorption time. The coverage states of DTAB on surfaces were analyzed from the AFM images, while the contact angle measurement was made for the wettability of DTAB-modified surfaces. The experimental results have shown that the adsorption aggregates formed as needle-like dots covering on the mica surface with the surfactant concentration of 10?6–10?4?mol/L. The coverage of DTAB aggregates increased with the increasing concentration, leading to a strong hydrophobicity on the surfaces. However, the large aggregates which might be caused by bilayer adsorption of surfactant occurred on mica surface at surfactant concentration of 10?3?mol/L, resulting in the reverse of the wettability as the adsorption time extended. In the case of hydrophobic graphite, DTAB aggregates mainly formed as stripe covering on the surfaces, leading to the reduction of hydrophobicity. This reduction became stronger as more DTAB aggregates covered on graphite surfaces.  相似文献   

15.
In the present work, we investigated self-assembling of a poly(phenylacetylene) carrying L-valine pendants (PPA-Val) in a water/methanol solution, upon evaporation of the solution on mica, and on the water surface. With intercalation of a fluorescence probe of Ru(phen)2(dppx)2+ (phen = 1,10-phenanthroline, dppx=7,8-dimethyldipyridophenazine) into the hydrophobic cavities associated by the PPA-Val chains, their helical structures were directly detected in solution with an in situ fluorescence microscope. Helical aggregates were observed with AFM upon evaporation of the solvents, suggesting that the helical structures in the solution are the building blocks of the helical aggregates. Self-assembling structures of PPA-Val on the water surface were, however, very different from that formed upon evaporation of its THF solution on the mica surface. The polymer chains associated into a monolayer of extended fibers on the water surface, whereas superhelical fibers formed on the mica surface. Water molecules play a critical role in inducing the polymer to form diverse morphological structures in its bulk solution and on its surface. In solution, the isotropic hydrophobic effect drove the polymer chains to form superhelical aggregates, while on the water surface, the hydrophobic effect concentrated mainly on the lateral part of the polymer, thus giving a monolayer of extended fibers.  相似文献   

16.
This article explores photophysical properties and aggregation behaviors of conjugated polymer, poly[2‐methoxy, 5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene](MEH?PPV), in various solvent–nonsolvent systems by utilizing UV/vis absorption and photoluminescence (PL) spectroscopy. The isolated chains of MEH‐PPV dispersed in solvents including dichloromethane, chloroform, and tetrahydrofuran adopt either extended or collapsed conformations depending on local polymer–solvent interactions. Aggregation of the MEH‐PPV in these solvents is induced by addition of a poor solvent, cyclohexane. The formation of aggregates is indicated by the appearance of distinct red‐shift peaks in the absorption and PL spectra. The degree of aggregation in each solvent–nonsolvent system is compared by means of absorbance and PL intensity of the aggregate bands. In early stage of the aggregation, the amount of aggregates in system is controlled by the solubility of polymer. When the polymer chains are forced to densely pack within assembled particles by increasing ratio of cyclohexane to 99 v/v %, the conformation of individual chain plays important role. We have found that the extended chains facilitate the aggregation in the assembled particles. Increasing chain length of polymer promotes the aggregation in early stage and densely packed particles. Size distribution of the assembled particles is also found to depend on the choice of solvent. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 894–904, 2010  相似文献   

17.
This study investigates the aggregation in cyclohexane of silica particles initially stabilized by grafted polystyrene and destabilized by temperature reduction. It complements an earlier study by Zhu and Napper (P.W. Zhu, D.H. Napper, Phys. Rev. E 50 (1994) 1360) in which the aggregation of polystyrene latex particles with tethered poly(N-isopropyl acrylamide) (PNIPAM) in water was investigated. Their dynamic light scattering results showed that both the rate of aggregation and the aggregate fractal dimension increased with a sufficient decrease in the PNIPAM adlayer solvency, achieved by means of either salt (NaNO3) addition or temperature rise. This result stands in contrast to those obtained when an electrostatically stabilized colloid is destabilized, i.e., that the more rapidly aggregates are formed, the lower the resulting fractal dimension. The authors explained their results in terms of the effects of both salt effects and increased temperature on the extent of the hydrophobic interactions between the adlayer-covered surfaces in the water. The present study examines a sterically-stabilized colloid in a nonaqueous solvent, where neither salt effects nor hydrophobic effects play a role. Temperature is decreased to bring the system from better-than-theta-conditions to worse-than-theta-conditions. Power-law aggregation kinetics are observed at 15.7 degrees C by dynamic light scattering. The particles first undergo reduced rate aggregation, producing low-fractal-dimension aggregates, which after some time, restructure into more compact aged clusters. The fractal dimension of these aged clusters increases with increasing initial aggregation rate, consistent with results seen by Zhu and Napper, but without the presence of hydrophobic effects. The ability of the polymer-grafted particles to rearrange suggests aggregation into a secondary minimum, with the ability to slide over one another to achieve a more energetically favorable, denser configuration. The reversible nature of the aggregation is verified by additional experiments gradually bringing the system from worse-than-theta-conditions back to better-than-theta-conditions, with an attendant decrease in aggregate fractal dimension, and ultimately full redispersion.  相似文献   

18.
Formation of poly(styrene/α-tert-butoxy-ω-vinyl-benzyl-polyglycidol) microsphere assemblies on mica plates modified with 3-aminopropyltriethoxysilane was investigated. Microsphere assemblies contained two types of particles similar with respect of their chemical structure but with different diameters (D n = 1000 and 350 nm). Methods of particle deposition included: deposition from water suspension of a mixture of small and large particles on mica plates placed at the bottom of suspension container, deposition of particles from a drop of ethanol suspension (containing large and small microspheres) placed on the mica substrate, deposition of microspheres on modified mica plates crossing the liquid-air interface-sequential deposition of large and small particles, and one-batch deposition from a mixed water suspension of large and small microspheres. Deposition from water suspension containing large and small microspheres on plates placed on the bottom of suspension container yielded assemblies with large particles randomly distributed among the small ones. Fraction of large particles in adsorbed particle assembly was smaller than fraction of large particles in suspension. Particle assemblies prepared by placement of ethanol suspension of large and small microspheres on mica were composed of quite regularly distributed large particles among the small ones. A two step process consisting of withdrawal of mica plate from water suspension of large particles and then on using this plate as substrate in a second step during which the plate was withdrawn from suspension of small particles yielded particle assemblies containing aggregates of large particles randomly distributed among the small ones. Withdrawal of mica plates from water suspension of large and small microspheres resulted in particle assemblies composed of regularly distributed stripes of large and small microspheres. Formation of the described above microsphere assemblies is possible only in case of reversible adsorption of particles.  相似文献   

19.
We have studied the exfoliation and dispersion of hexabenzocoronene (HBC) in 28 different solvents. We see a wide range of dispersed concentrations and aggregation states, all of which can be related to the solvent properties. To a first approximation, the dispersed concentration is maximized for solvents with Hildebrand solubility parameter close to 21 MPa(1/2), similar to graphitic materials such as nanotubes and graphene. We have also studied the concentration dependence of the absorbance and photoluminescence of HBC for both a good solvent, cyclohexyl pyrrolidone (CHP), and a poor solvent, tetrahydrofuran (THF). In both cases, we observe features that can be associated with either individual molecules or aggregates, allowing us to establish metrics both for aggregate and individual molecule content. While the aggregate content always increases with concentration, good solvents disperse individual molecules at relatively high concentrations while poor solvents display aggregation even at low concentrations. Using these metrics, we determine that large populations of individual molecules are present at low concentrations in certain solvents with Hildebrand solubility parameters close to 21 MPa(1/2). However, the aggregation state of HBC is considerably more sensitive to solvent Hildebrand parameter for halogenated solvents than for amide solvents. We find a combination of high overall concentrations and large populations of individual molecules in four solvents: cyclohexyl pyrrolidone, 1-chloronaphthalene, 1-bromonaphthalene, and 1,2,4-trichlorobenzene. Scanning tunnelling microscopy (STM) measurements show the formation of self-assembled monolayers at the interface between a HBC-solvent dispersion and a highly oriented pyrolytic graphite (HOPG) substrate. Similar structures were observed on ultrathin supports by aberration-corrected transmission electron microscopy (TEM). Also observed were graphitic objects of size ~1 nm consistent with monomers or aggregated stacks of very few monomers. We believe this is strong evidence of the presence of individual molecules in dispersions prepared with appropriate solvents.  相似文献   

20.
The slow aggregation process of a concentrated silica dispersion (Bindzil 40/220) in the presence of alkali chlorides (LiCl, NaCl, KCl, RbCl, and CsCl) was investigated by means of mobility measurements. At intervals during the aggregation, particles and aggregates were transferred from the liquid phase to the gas phase via electrospray (ES) and subsequently size selected and counted using a scanning mobility particle sizer (SMPS). This method enables the acquisition of particle and aggregate size distributions with a time resolution of minutes. To our knowledge, this is the first time that the method has been applied to study the process of colloidal aggregation. The obtained results indicate that, independent of the type of counterion, a sufficient dilution of the formed gel will cause the particles to redisperse. Hence, the silica particles are, at least initially, reversibly aggregated. The reversibility of the aggregation indicates additional non-DLVO repulsive steric interactions that are likely due to the presence of a gel layer at the surface. The size of the disintegrating aggregates was monitored as a function of the time after dilution. It was found that the most stable aggregates were formed by the ions that adsorb most strongly on the particle surface. This attractive effect was ascribed to an ion-ion correlation interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号