首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Co/Ti multilayers with wedge-shaped Co or Ti sublayers were prepared using UHV (5×10−10 mbar) DC/RF magnetron sputtering. The planar growth of the Co and Ti layers was confirmed in situ by X-ray photoelectron spectroscopy. Cobalt sublayers grow on sufficiently thick titanium sublayers in the soft magnetic nanocrystalline phase up to a critical thickness dcrit3.0 nm. For a thickness greater than dcrit, the Co sublayers undergo a structural transition to the polycrystalline phase with much higher coercivity. Furthermore, for the Co/Ti multilayers with nanocrystalline Co sublayers with dCo=2.7 nm we have observed a significant drop of the coercivity — typically from Hc3.5 kA/m to Hc0.2 kA/m — for Ti thickness dTi0.35 nm. The above effect could be explained by the existence of a minimum Ti sublayer thickness (dmin0.35 nm), which is required for the nanocrystalline growth of Co, and/or the formation of quasi-continuous non-magnetic layers for dTidmin giving rise to a decrease of the exchange energy between Co sublayers. Magnetic domains and walls studies revealed the structural transitions of the Co sublayers.  相似文献   

2.
The structural and magnetic properties of La/Fe multilayers were investigated by X-ray diffraction, RHEED, magnetometry and57Fe Mössbauer spectroscopy. Comparison is made with previous results obtained for Ce/Fe multilayers. Remarkably sharp interfaces are found, with roughness between 2 and 2.5 Å. The magnetic interface in the Fe sublayers resulting from the distribution of magnetic hyperfine fields distinctly exceeds the extension of the structural interface and points to a magnetic proximity effect. This is discussed in relation to a strong 3d-5d hybridization recently found in measurements of magnetic circular X-ray dichroism. Both the structural and magnetic La/Fe interface is less extended than the interface in Ce/Fe multilayers. Below a thickness of about 25 Å, the individual Fe layers grow in an amorphous structure on the La layers. In this case, Curie temperatures are below 200 K and the Fe-layer saturation magnetization is reduced up to 50%, and there is evidence of a non-collinear spin structure. It is argued that this mainly reflects the properties of pure amorphous Fe.  相似文献   

3.
A thin film of a second-kind superconductor in a magnetic field parallel to the surface of the film is considered in the London approximation. It has been shown that if bulk pinning is absent and the suppression of super-conductivity by the magnetic field is negligible, the splitting of a vortex chain in the film occurs as a structural phase transition either of the first or second order, depending on the ratio of the thickness of the film d to the penetration depth of the magnetic field λ. The ratio d/λ, and thereby the character of the transition in the vortex lattice, can be changed by varying the temperature. The corresponding critical thicknesses of films and field ranges in which this effect can be observed experimentally have been calculated.  相似文献   

4.
The magnetic properties of electrical steel such as magnetization curves, magnetization behavior and specific magnetic losses are related to the microstructure and the texture of the steel. A quantitative model, which describes the effect of microstructure and texture and their interplay on the magnetic losses P, is still missing. Based on experimental data for nonoriented electrical steels and FeSi-samples with high (Si, Al)-content, a more general formula is proposed for the dependence of P, at a given value of magnetic induction B, as a function of the mean value of the grain size d of the material and of the intensities of the relevant magnetic texture components.  相似文献   

5.
The structure and magnetic properties of Cu-Fe fiber composites prepared by packet hydrostatic extrusion are studied. The number of armco-iron fibers in the copper matrix attained n ∼ 8 × 1010, and rated diameter d of fibers varied from 2 mm to 3 nm. A correlation is observed between the magnetization hysteresis curves and low-frequency magnetic susceptibility obtained on samples with various values of d. It is shown that the magnetic properties of composites in the submicrometer range of d values are satisfactorily described in the magnetization reversal theory for small ferromagnetic particles.  相似文献   

6.
The superconducting and magnetic properties of Nb/Pd1-xFex/Nb triple layers with constant Nb layer thickness dNb=200 ? and different interlayer thicknesses 3 ?≤ dPdFe ≤ ? are investigated. The thickness dependence of the magnetization and of the superconducting transition temperature shows that for small iron concentration x the Pd1-xFex layer is likely to be in the paramagnetic state for very thin films whereas ferromagnetic order is established for x ≥ 0.13. The parallel critical field Bc2||(T){B_{c2||}}(T) exhibits a transition from two-dimensional (2D) behavior where the Nb films are coupled across the interlayer, towards a 2D behavior of decoupled Nb films with increasing dPdFeand/or x. This transition allows a determination of the penetration depth xF{\xi _F} of Cooper pairs into the Pd1-xFex layer as a function of x. For samples with a ferromagnetic interlayer xF{\xi _F} is found to be independent of x.  相似文献   

7.
Switching behaviors of magnetic vortex cores under external magnetic field in submicron circular permalloy disks have been systematically studied by using micromagnetic simulations. Simulation results show that the vortex core is stable in out-of-plane field even when it is located at the edge of the disk. The out-of-plane switching field Hsw is strongly dependent on the thickness of the disk. The core polarity and the vortex chirality can be modulated simultaneously on purpose by using a tilted field far smaller than the out-of-plane switching field Hsw. Moreover, it is found that the core polarities in asymmetric disks do not follow the direction of the z projection of the external saturation field.  相似文献   

8.
A brief review is given of the effects that quenched, magnetic disorder have on the magnetic properties of systems with short-range interactions. Of primary interest are random exchange, random anisotropy and random fields. Recent theoretical and experimental studies have begun to illuminate the unusual critical behavior that is seen in randomly diluted antiferromagnets in the presence of a uniform field, which is the most direct manner by which the random field problem may be approached. Considerable uncertainty still exists as to what is the lower critical dimensionalityd 1 and the effective dimensionality ¯d ford-dimension Ising systems in the presence of a random field. This whole area appears to be one in which further insight might be gained through the application of microscopic probes such as NMR, Mössbauer Effect andSR.  相似文献   

9.
In this paper an attempt has been made to extend the Jiles and Atherton (J–A) quasi-static hysteresis model to describe magnetisation of a material with an alternating magnetic field. In low – industrial – and medium frequency of magnetic field it is possible to ignore the magnetic relaxation and resonance. The field penetration is assumed to be uniform through the material. The influence of eddy currents on the hysteresis loop could be considered and calculated using the method of successive reactions of eddy currents, where a reaction is an additional magnetic field, called reaction Hd, induced in the material by the eddy currents according to rot J=γB/∂t where γ is the electrical conductivity. The reaction field Hd was added to the basic field H0Iz1, where I is the current intensity in the magnetising coil of z1 number of windings. By solving the J–A equation for the magnetic field Hw=H0+Hd it has achieved an extension of the hysteresis loop at an increased frequency of the current, caused by increased losses of the eddy currents. At the frequency f→0 Hz , the hysteresis loop approaches the shape of the quasi-static one.  相似文献   

10.
In the present work, we report ab-initio studies of the magnetic property variations with pressure of both iron sites in the structure of Fe4N, using full-potential linearized augmented plane wave method and the Perdew–Burke–Ernzerhof functional and generalized gradient approximation to describe the exchange-correlation potential are reported. The results show that the magnetic moment of FeI is almost constant while the magnetic moment of FeII presents a discontinuity when the lattice parameter is varied. This is reflected in the compression of the spin up and down energy bands to different concentration points. The variation in the FeII magnetization arises mainly from changes in the dxy, dxz, dyz and dx2−y2 orbitals.  相似文献   

11.
The contributions of 4f, 5d and 6s electrons to the saturation magnetic moments and magnetic hyperfine fields in the heavy rare earth metals are calculated using the model described in the previous paper. It is found that 4f shell moments are reduced from their free ion values by amounts varying from 0.05µ B in Gd to several tenths of a Bohr magneton in Tb and Dy, in qualitative agreement with a recent published analysis of neutron diffraction results in Tb, but that the calculated total saturation moments in Tb and Dy are slightly larger than commonly accepted experimental values. After 6s contributions to magnetic hyperfine fields are determined by fitting observations in Gd, the predicted differences between the fields for metals and those for free ions are such that the estimated uncertainty ranges of the theoretical values overlap the experimental ranges. The 5d contribution in the model is negative, varying from about –40 kOe in Tb to –200 kOe in Er. Electric field gradients are also analysed. Observed results can be fitted if the average effective Sternheimer screening factorR d * for 5d electrons in the metals satisfies (1 —R d * )0.7.  相似文献   

12.
The influence of magnetic phase transitions on electronic structure and optical properties of magnetic semiconductors is discussed. Europium chalcogenides and chromium chalcogenide spinels are the main subjects of the investigation. It is shown, that many-body effects are responsible for the changes of optical properties and non-rigid band behavior of electronic structure. Magnetic phase transition leads to energy shift of wide bands and change in density of states of “magnetic” d(f)-electrons without any significant shift of their energies. The influence of fluctuations at TT c and antiferromagnetic semiconductors are also considered.  相似文献   

13.
The field dependence of the vibrational contribution to the dynamic magnetic permeability μ V(H) is calculated for a thin (of thickness dλ) high-T c superconducting wafer in a magnetic field parallel to the surface. The resulting curves are plotted on the basis of an exact numerical analysis of the vortex structures both for the thermodynamic-equilibrium vortex lattice and in the presence of pinning forces and the Bean-Livingston surface barrier. It is shown that the μ V(H) curves are highly sensitive to the size factor (d/λ) and exhibit abrupt changes corresponding to a change in the number of vortex rows. The equilibrium μ V(H) curve is found to be similar in its general behavior and absolute value (obtained with allowance for the distribution of grain sizes and with appropriate values of λ and ϰ) to the experimental μ V(H) curve plotted at nitrogen temperature for fine-grained YBa2Cu3Ox with grain diameters 〈D〉∼λ in an increasing magnetic field. It is established that the main cause of the experimentally observed irreversible behavior of the μ V(H) curves during cyclic variation of the applied magnetic field is the existence of a surface barrier to the exit of vortices from the superconductor. The lower limit H min(B) of stability of the mixed state in the presence of an ideal surface barrier in a thin, high-T c superconducting wafer (dλ) is determined, along with the range of the vortex state (H max-H min) for a fixed number of vortices in micrometer-size grains of the investigated YBaCuO samples. Fiz. Tverd. Tela (St. Petersburg) 39, 1943–1947 (November 1997)  相似文献   

14.
The crystal structure and hysteretic magnetic properties of equiatomic single-crystal CoPt films applied on MgO substrates by magnetron sputtering, as well as modification of these properties by thermal annealing, are studied. Heat-treated films of thickness in the range 2<d≤16 nm exhibit perpendicular magnetic anisotropy. A correlation between the crystalline anisotropy constant of the CoPt films and the order parameter of the LI0 superstructure in these alloys is found. The effect of a single-crystalline MgO substrate on the structure and magnetic properties of equiatomic CoPt films is revealed.  相似文献   

15.
建立了梯度磁场下金属熔体中晶粒迁移的一般动力学模型,导出了磁场对导电熔体黏度的影响规律,得到了迁移速度的解析解和迁移距离的分析解.导电熔体的有效黏度随磁场强度的平方成线性递增关系.迁移速度达到终极速度的时间为10-3s数量级.终极速度随着磁场强度的增加而迅速减小,表明强磁场对晶粒迁移有抑制作用.迁移距离和迁移率与磁场分布密切相关.为观察初晶硅的迁移状况,将Al-18wt%Si合金在650℃保温60min后,施加强梯度磁场(Bz=5 T,BzdBz/dz=-224T2·m-1)对熔体作用不同时间并淬火,结果表明,晶粒半径大于等于40μm的初晶硅在120s内大部分完成迁移,与理论计算符合. 关键词: 强梯度磁场 析出相 迁移 刚体动力学  相似文献   

16.
The structure of a vortex lattice in thin (d<λ, where d is the film thickness and λ is the London penetration depth) superconducting films is investigated in a magnetic field parallel to the film surface. It is shown that the stable configuration has the form of discrete vortex rows whose number changes discretely with an increase in the applied magnetic field. The entry fields H c1 (N) (d) for vortex rows are calculated for N=1, 2. It is shown that the structural transition in the vortex ensemble is a second-order phase transition. A simpler method (as compared to the Monte Carlo technique) is proposed for calculating the vortex lattice parameters.  相似文献   

17.
The aim of this study is to analyse the stability of the single in-plane vortex state in two-dimensional magnetic nanodots with a nonmagnetic impurity (single-spin defect) at the centre. Small square and circular dots including up to a few thousand of spins are studied by means of a microscopic theory with nearest-neighbour exchange interactions and dipolar interactions fully taken into account. We calculate the spin-wave frequencies versus the dipolar-to-exchange interaction ratio d to find the values of d for which the assumed state is stable. Transitions to other states and their dependence on d and the vortex size are investigated as well, with two types of transition found: vortex core formation for small d values (strong exchange interactions), and in-plane reorientation of spins for large d values (strong dipolar interactions). Various types of localized spin waves responsible for these transitions are identified.  相似文献   

18.
The influence of the bias voltage polarity Us on microstructure, crystallographic texture and magnetic properties has been investigated for Ni films with a thickness of ≈15–420 nm, which are obtained via magnetron sputtering at a working gas pressure P corresponding to the collision-deficient flight mode of atoms of the sputtered target between the target and the substrate. The Ni(111)-textured films have been shown to form at Us ≈–100 V, whose microstructure and magnetic parameters are almost unchanged with a thickness. In contrast, the Ni(200) films are formed at Us ≈ +100 V, whose magnetic properties and micro-structure depend significantly on the thickness d that manifests in a critical thickness d* ≈ 150 nm, when the structure of the film becomes inhomogeneous in the thickness, the remagnetization loops are changed from rectangular to supercritical with the formation of the band domain structure.  相似文献   

19.
We report on X-ray magnetic diffraction studies of the spin density wave antiferromagnetism formed in the conduction electron band of chromium. Non-resonant X-ray magnetic scattering was used to directly determine that chromium has zero orbital magnetisation. Furthermore, the azimuthal dependence of this scattering provides unique evidence that chromium forms a linearly polarised wave. In the vicinity of the K absorption edge, resonant X-ray magnetic scattering was observed. A consistent model of the magnetic scattering has been derived from the resonant and non-resonant magnetic amplitudes. The enhancement of the magnetic intensity arises primarily from dipole transitions from the core 1s level to 4p states. Quadrupole transitions to the magnetic 3d states are essentially non-existent due to their sensitivity to (and the absence of) orbital moment. This effect is predicted from atomic considerations of the 3d5 ( = 0) transition metal ions. Received 22 September 2000  相似文献   

20.
A stochastic model is given of a system composed ofN similar disk dynamos interacting with one another. The time evolution of the system is governed by a master equation of the class introduced by van Kampen as relevant to stochastic macrosystems. In the model, reversals of the earth's magnetic field are regarded as large deviations caused by a small random force ofO(N –1/2) from one of the field polarities to the other. Reversal processes are studied by simulation, which shows that the model explains well the activities of the palaeomagnetic field inclusive of statistical laws of the reversal sequence and the intensity distribution. Comparisons are made between the model and dynamical disk dynamo models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号