首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within a continuous vortex model, exact expressions are obtained for the Josephson and magnetic energies of plane (laminar) vortices, as well as for the energy and force of pinning by cells in a three-dimensional Josephson medium. If the porosity of the medium is taken into account, the Josephson and magnetic energies of the vortex differ from those for the continuum case. The contributions to the pinning energy from the Josephson and magnetic energies have opposite signs. An algorithm for numerically solving a system of difference equations is proposed in order to find the shape and the energy of the vortex in its stable and unstable states. The continuous vortex model is shown to fail in predicting correct values of the Josephson and magnetic energy of the vortex, as well as of the pinning energy components. Expressions for the least possible distances between two isolated vortices are obtained for a small pinning parameter. Analytical results are in close agreement with computer simulation. An algorithm for numerically solving a system of difference equations is proposed in order to find the least possible distances between two isolated vortices when the pinning parameter I is not small. The minimal value of I at which the center-to-center distance N of the vortices equals three cells is 1.428; for N=2, I min=1.947. At I>2.907, the vortices can be centered in adjacent cells.  相似文献   

2.
The pinning energy of plane (laminar) vortices in a 3D Josephson medium is calculated within a continuous vortex model considering functions of two types: V=1−cosϕ and V= 2/π4ϕ2(2π−ϕ)2. The shape and energy of the stable and unstable vortices are found with an algorithm for the exact numerical solution of a set of difference equations. The vortex magnetic and Josephson energies diverge. The magnetic and Josephson components of the pinning energy are close in magnitude but differ in sign; as a result, the total pinning energy is smaller than its components by one order of magnitude. This result is confirmed analytically. An analytical computing method within the continuous vortex model is suggested. This method preserves the difference terms in the energy expression. The magnetic energy found by this method differs from the Josephson energy in magnitude, and the magnetic component of the pinning energy is opposite in sign to the Josephson component. Comparative analysis of the approximate approaches to energy calculation within the continuous vortex model when the difference terms are retained and when they are replaced by derivatives is performed. It is shown that the continuous vortex model gives incorrect values of the Josephson and magnetic components of the pinning energy. The actual values are several tens or several hundreds of times higher than those obtained with the continuous vortex model. Yet, since the Josephson and magnetic components of the pinning energy have different signs, the exact value of the total pinning energy and the approximate value obtained within the continuous vortex model differ insignificantly.  相似文献   

3.
Fractional Josephson vortices carry a magnetic flux Phi, which is a fraction of the magnetic flux quantum Phi(0) approximately 2.07 x 10(-15) Wb. Their properties are very different from the properties of the usual integer fluxons. In particular, fractional vortices in 0-kappa Josephson junctions are pinned and have an oscillation eigenfrequency which is expected to be within the Josephson plasma gap. Using microwave spectroscopy, we investigate the dependence of the eigenfrequency of a fractional Josephson vortex on its magnetic flux Phi and on the bias current. The experimental results are in good agreement with the theory.  相似文献   

4.
In tilted magnetic fields, vortices in anisotropic superconductors form one-dimensional arrangements, called vortex chains. We have visualized vortex chains by Bitter decoration and magneto-optical technique. The fundamental energy scale for the attractive interaction between pancake and Josephson vortices is evaluated by observing vortex chains under various conditions. We also explore how the vortex chains evolve when the large in-plane field is applied or when the anisotropy parameter of the system is changed  相似文献   

5.
The interaction energy between vortices and the structure of the vortex lattice in superconducting layers is calculated. It is shown that the one-dimensional vortex lattice (with vortices in the centre of the layer) is stable in a relatively large interval of magnetic fields above the flux penetration field. This result is true not only for very thin layers (with dimensions smaller than the penetration depth), but also for layers withd>. The results can be helpful at explaining some unusual experimental results on Josephson effects in long superconducting bridges.  相似文献   

6.
Various ways of specifying the pinning-energy concept for planar vortices in a three-dimensional cellular Josephson medium are analyzed. It is shown that, for values of the pinning parameter I that are not small, a universal characteristic of vortex interaction with the lattice cannot be found, since the displacement of a vortex distorts its shape. At small values of I, the maximum pinning force can be chosen for such a characteristic. Two equilibrium states of a vortex are analyzed for stability. It is revealed that the state of higher energy is not inevitably unstable. A correct analysis of stability must be based on exploring a quadratic form that describes the energy of a current configuration. Such an investigation is performed for the equilibrium state of a vortex. At small values of the pinning parameter, the vortex state of higher energy is quasistable.  相似文献   

7.
The c-axis resistivity measurements were performed in the vicinity of the ab-plane in order to investigate the interaction between Josephson vortices and pancake vortices in Bi2Sr2CaCu2O8+δ mesoscopic single crystals. It was found that the angular dependence of the c-axis resistivity drastically changes in high magnetic field regime. The vortex lock-in transition becomes considerably broad in high magnetic fields, while the angular dependence of resistance exhibits the sharp lock-in features in low magnetic field region.  相似文献   

8.
尤育新  赵志刚  王进  刘楣 《物理学报》2008,57(11):7252-7256
通过数值计算耦合sine-Gordon方程组研究高温超导体中约瑟夫森涡旋的运动,得到约瑟夫森涡旋电压和流阻随平面磁场和驱动电流的变化规律.固定驱动电流,约瑟夫森涡旋电压和流阻随着磁场的增大出现周期性的振荡行为,振荡周期与每层约瑟夫森结中进入一个磁通量子相对应.分析和阐明了产生这种周期性振荡的原因. 关键词: 约瑟夫森涡旋 涡旋格子 高温超导  相似文献   

9.
We have studied the vortex dynamics in a ratchet array of Josephson junctions in the presence of magnetic field of 1/5 flux quantum per plaquette. The ratchet potential consists of both alternate critical currents for all the vertical junctions and alternate shunt capacitances for all the horizontal junctions. The vortices driven by an ac current in some parameters are found to show the directional motion as well as the asymmetric current-voltage characteristics. We use the time-dependent vorticity and the time-dependent vorticity-vorticity correlation function to analyze the motion of vortices on a few fractional Shapiro steps. We have found that vortices on a fractional Shapiro n/5-step move coherently through n plaquettes during a single ac cycle. The asymmetric features of the ratchet array gradually disappear as finite temperature increases.  相似文献   

10.
Abstract

The phenomenological theory of superconductors with a many-component order parameter (OP) is developed. On the basis of a generalized Ginzburg-Landau functional, equations for a two-component-OP superconductor are derived. It is shown that such a superconductor is specified by three length dimensionality parameters—penetration depth λ, correlation length ζ, and width d of the boundary between two superconducting-phase domains. With λ ? d ? ζ, the equations for the OP of a superconductor in a magnetic field can be explored analytically. The transition from the superconducting to the mixed phase may occur not only by the formation of ordinary Abrikosov vortices, but also owing to vortices that have two cores, each transferring a half-integral flux quantum. The total flux transferred by a vortex certainly constitutes an integral quantum. The cores of such a dimer are interconnected by two domain walls, which exercise confinement within the dimer. The distance between the cores in the dimer is of the order of d. Within a domain wall that separates two superconducting-phase domains, a dimer may fall apart into two vortices with a half-integral flux quantum.

For many-component-OP superconductors in a magnetic field, vortex structures of a more complicated nature than a dimer may occur. An individual core may transfer a fractional flux quantum, but the structure as a whole transfers an integral flux quantum. Confinement of individual cores occurs owing to a complicated system of domain walls determined by the topological charges of these vortices.

Under certain conditions, on attaining field H c1, vortices may arise first in the domain walls, carrying a fractional flux quantum, and then within the superconducting domains.  相似文献   

11.
We examine theoretically the generation of electromagnetic radiation in the relative motion of vortex lattices in magnetically coupled films in the dc transformer geometry. We establish the conditions under which the force of mutual pinning of the vortex lattices varies according to a harmonic law as a function of the relative displacement of the vortices in the films within a given range of magnetic field inductions. In this case the equation describing the viscous flow of vortex lattices in magnetically coupled films is the same as the equation of the resistively shunted Josephson junction model. We show that magnetically coupled superconductors exhibit the properties of a Josephson element without any restrictions on the geometrical size of such a system imposed by the coherence length ξ. The frequency f of the electromagnetic radiation generated by the relative motion of vortex lattices in magnetically coupled superconductors depends on the spatial period of the vortex lattices and the velocity of relative vortex motion, which means that the frequency of the radiation can be tuned by applying a magnetic field or a current. Zh. éksp. Teor. Fiz. 113, 1319–1338 (April 1998)  相似文献   

12.
Vortex breaking has traditionally been studied for non-uniform critical current densities, although it may also appear due to non-uniform pinning force distributions. In this article we study the case of a high-pinning/low-pinning/high-pinning layered structure. We have developed an elastic model for describing the deformation of a vortex in these systems in the presence of a uniform transport current density J for any arbitrary orientation of the transport current and the magnetic field. If J is above a certain critical value, Jc , the vortex breaks and a finite effective resistance appears. Our model can be applied to some experimental configurations where vortex breaking naturally exists. This is the case for YBa2Cu3O7?δ (YBCO) low-angle grain boundaries and films on vicinal substrates, where the breaking is experienced by Abrikosov–Josephson vortices (AJV) and Josephson string vortices (SV), respectively. With our model, we have experimentally extracted some intrinsic parameters of the AJV and SV, such as the line tension ? l and compared it to existing predictions based on the vortex structure.  相似文献   

13.
The behavior of planar (laminar) vortices in a three-dimensional, ordered Josephson medium as a function of the parameter I, which is proportional to the critical junction current and the cell size, is investigated with allowance for pinning due to the cellular structure of the medium. The minimum possible distances between two isolated vortices are calculated. A system of vortices formed in a sample in a monotonically increasing external magnetic field is analyzed. The minimum distance from the outermost vortex to the nearest neighbor is proportional to I −1.1. For I⩽1.3 each vortex contains a single flux quantum Φ0, and the distance between them does not decrease in closer proximity to the boundary but remains approximately constant, implying that the magnetic field does not depend on the coordinate in the region penetrated by vortices. These facts contradict the generally accepted Bean model. The sample magnetization curve has a form typical of type II superconductors. Allowance for pinning raises the critical field H c and induces a sudden jump in the curve at H=H c. Zh. Tekh. Fiz. 67, 38–46 (September 1997)  相似文献   

14.
Two equilibrium configurations of a line vortex in a three-dimensional ordered Josephson medium are considered: (i) the vortex core is at the center of a cell and (ii) the vortex core is on a contact. Infinite systems of equations describing these configurations are derived. In going to a finite system, the currents far away from the center are neglected. A new technique for solving the finite system of equations is suggested. It does not require smallness of phase discontinuities at all vortex cells and, therefore, can be applied for any values of pinning parameter I down to zero. The structures and energies of both equilibrium states for isolated line vortices are calculated for any I from the range considered. For I >0.3, a vortex can be thought of as fitting a square of 5×5 cells. For lower I, the vortex energy can be expressed as a sum of the energies of the small discrete core and the quasi-continuous outside. The core energy is comparable to the energy of the outside and is a major contributor to the vortex energy when I is not too small. For any I, the energy of the vortex centered on the contact is higher than the energy of the configuration centered at the center of the cell.  相似文献   

15.
赵志刚  徐紫巍  李斌  刘楣 《物理学报》2009,58(8):5750-5756
采用电阻阻错结的无序二维约瑟夫森结阵列模型,数值研究超导薄膜中垂直磁场引起的涡旋运动.通过分析磁场激发产生的涡旋度Ne及低频电压噪声S0的变化特性,得到如下结论:在无序超导体中固定温度不变,随着磁场的减弱涡旋液态经过准有序的布拉格相,涡旋玻璃相重新进入到低磁场下的钉扎稀磁液相. 由于在涡旋玻璃相中,电流驱动下的噪声值表现出一个峰,表明系统处于无序与有序相互竞争的亚稳态,并且临界电流应有峰值效应. 计算得到噪声值的变化与Okuma等得到的无序超导MoxSi1-x膜实验现象一致,并能解释磁场降低引起的重新进入钉扎的稀磁液相行为. 关键词: 约瑟夫森结阵列 磁通玻璃 重新进入 峰值效应  相似文献   

16.
Because of attraction of the parallel currents forming an Abrikosov vortex, the vortex energy per unit length decreases, under bending of the vortex, by a quantity proportional to the square of the curvature. Solving the London equation in an approximation allowing for this effect makes it possible to calculate the energy of an Abrikosov vortex in the form of a helix whose length and pitch are much larger than the correlation length, whose curvature is small compared to the reciprocal London length, and whose slope in relation to an axis coinciding with the direction in which the vortex energy is the highest is also small. When the anisotropy is large, which is characteristic of high-T c superconductors, the energy of such an Abrikosov vortex is lower than that of a straight Abrikosov vortex. Certain consequences of the fact that the Abrikosov vortices in a high-T c superconductor are helical are discussed. Among these is a phase transition that breaks the symmetry between Abrikosov vortices shaped like right-and left-hand helixes in relation to the magnetic field. Zh. éksp. Teor. Fiz. 111, 1869–1878 (May 1997)  相似文献   

17.
The Meissner state of a 3D Josephson medium is analyzed for stability against small fluctuations of phase discontinuities at contacts. For any form of fluctuations, there exists value I 0 of pinning parameter I such that the Meissner configuration remains stable if I < I 0. Reasons why the configuration remains stable at small I are considered. Instability arises when the quadratic form of the second variation of Gibbs potential G is not a positively definite quantity. At small I, the contribution of the Josephson energy to G is small. The second variation of the magnetic energy, the other component of G, is always a positively definite quadratic form. Therefore, instability may arise only if I has a finite value. This statement holds true not only for the Meissner but also for any equilibrium configuration. At I < I 0, stability persists up to the boundary of the Meissner state. Then, a sequence of plane vortices parallel to the boundary appears throughout the sample. Thus, vortices appearing at I < I 0 are plane vortices rather than linear. The configurations of currents and the magnetic field profile inside the sample are calculated for I < I 0. Calculation is based on analyzing the continuous variation of the current configuration toward a decrease in the Gibbs potential.  相似文献   

18.
To study the Josephson-vortex system, we have measured the vortex-flow resistance as a function of magnetic field parallel to the ab plane in Bi(2)Sr(2)CaCu(2)O(8+y) single crystals. Novel periodic oscillations of the vortex-flow resistance have been observed in a wide range of temperatures and magnetic fields. The period of the oscillations corresponds to the field needed to add "one" vortex quantum per "two" intrinsic Josephson junctions. The flow velocity is related to a matching effect between the lattice spacing of Josephson vortices along the layers and the width of the sample. These results suggest that Josephson vortices form a triangular lattice in the ground state where the oscillations occur.  相似文献   

19.
20.
For a Josephson junction magnetically coupled to the superconducting waveguides enclosing it, solutions to the equation for the difference of the Cooper pair phases over the Josephson junction are found and the corresponding magnetic field values are calculated. Two gaps imposing an upper limit for the vortex velocity are found for free vortices (moving without dissipation). Existence conditions are found for fast vortices in the two high-velocity allowed regions. The dependence of the transport current on vortex velocity is established in cases where the current flows through the Josephson junction only or through the entire structure. A reverse current phenomenon is discovered in which vortices inside allowed velocity regions move opposite to the usual direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号