首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed understanding of DNA strand breaks induced by low energy electrons (LEE) is of crucial importance for the advancement of many areas of molecular biology and medicine. To elucidate the mechanism of DNA strand breaks by LEEs, theoretical investigations of the electron attachment-induced C3'-O3' sigma-bond breaking of the pyrimidine nucleotides have been performed. Calculations of 2'-deoxycytidine-3'-monophosphate and 2'-deoxythymidine-3'-monophosphate in their protonated form (denoted as 3'-dCMPH and 3'-dTMPH) have been carried out with the reliably calibrated B3LYP/DZP++ theoretical approach. Our results demonstrate that the transfer of the negative charge from the pi*-orbital of the radical anion of pyrimidines to the DNA backbone does not pass through the N1-glycosidic bond. Instead, the migration of the excessive negative charge through the atomic orbital overlap between the C6 of pyrimidine and the C3' of ribose most likely represents a pathway that subsequently leads to the strand breaks. The proposed mechanism of the LEE-induced single strand breaks in DNA assumes that the formation of the base-centered radical anions is the first step in this process. Subsequently, these electronically stable radical anions may undergo either C-O bond breaking or N-glycosidic bond rupture. The present investigation of 3'-dCMPH and 3'-dTMPH yields an energy barrier of 6.2-7.1 kcal/mol for the C3'-O3' sigma-bond cleavage. This is much lower than the energy barriers required for the C5'-O5' sigma-bond and the N1-glycosidic bond break. Therefore, we conclude that the C3'-O3' sigma-bond rupture dominates the LEE-induced single strand breaks of DNA.  相似文献   

2.
The temporary anion states of gas-phase diphenyl disulfide are characterized by means of electron transmission (ET) and dissociative electron attachment (DEA) spectroscopies. The measured energies of vertical electron attachment are compared to the virtual orbital energies of the neutral state molecule supplied by MP2 and B3LYP calculations with the 6-31G basis set. The calculated energies, scaled with empirical equations, reproduce satisfactorily the attachment energies measured in the ET spectrum. The first anion state of diphenyl disulfide is stable, thus escaping detection in ETS. The vertical and adiabatic electron affinities, evaluated with B3LYP/6-31+G calculations as the energy difference between the neutral and anion states, are predicted to be 0.37 and 1.38 eV, respectively. The anion current displayed in the DEA spectrum has a sharp and intense peak at zero energy, essentially due to the C6H5S- negative fragment. In agreement, according to the calculations, the localization properties of the first anion state are strongly S-S antibonding, and the energetic requirement for its dissociation along the S-S bond is fulfilled even at zero energy.  相似文献   

3.
Low-energy electrons (LEE) are well known to induce nucleic acid damage. However, the damage mechanisms related to charge state and structural features remain to be explored in detail. In the present work, we have investigated the N1-glycosidic and C3'-O(P) bond ruptures of 3'-UMP (UMP=uridine monophosphate) and the protonated form 3'-UMPH with -1 and zero charge, respectively, based on hybrid density functional theory (DFT) B3 LYP together with the 6-31+G(d,p) basis set. The glycosidic bond breakage reactions of the 3'UMP and 3'UMPH electron adducts are exothermic in both cases, with barrier heights of 19-20 kcal mol(-1) upon inclusion of bulk solvation. The effects of the charge state on the phosphate group are marginal, but the C2'-OH group destabilizes the transition structure of glycosidic bond rupture of 3'-UMPH in the gas phase by approximately 5.0 kcal mol(-1). This is in contrast with the C3'-O(P) bond ruptures induced by LEE in which the charge state on the phosphate influences the barrier heights and reaction energies considerably. The barrier towards C3'-O(P) bond dissociation in the 3'UMP electron adduct is higher in the gas phase than the one corresponding to glycosidic bond rupture and is dramatically influenced by the C2'-OH group and bulk salvation, which decreases the barrier to 14.7 kcal mol(-1). For the C3'-O(P) bond rupture of the 3'UMPH electron adduct, the reaction is exothermic and the barrier is even lower, 8.2 kcal mol(-1), which is in agreement with recent results for 3'-dTMPH and 5'-dTMPH (dTMPH=deoxythymidine monophosphate). Both the Mulliken atomic charges and unpaired-spin distribution play significant roles in the reactions.  相似文献   

4.
Sugar-base C(1')-N(1) and phosphate-sugar C(5')-O(5') bond breakings of 2'-deoxycytidine-5'-monophosphates (dCMP) and 2'-deoxythymidine-5'- monophosphates (dTMP) and their radical anions have been explored theoretically at the B3LYP/DZP++ level of theory. Calculations show that the low-energy electrons attachment to the pyrimidine nucleotides results in remarkable structural and chemical bonding changes. Predicted Gibbs free energies of reaction DeltaG for the C(5')-O(5') bond dissociation process of the radical anions are -14.6 and -11.5 kcal mol(-1), respectively, and such dissociation processes may be intrinsically spontaneous in the gas phase. Furthermore, the C(5')-O(5') bond cleavage processes of the anionic dCMP and dTMP were predicted to have activation energies of 6.9 and 8.0 kcal mol(-1) in the gas phase, respectively, much lower than the barriers for the C(1')-N(1) bond breaking process, showing that the C-O bond dissociation in DNA single strand breaks is a dominant process as observed experimentally.  相似文献   

5.
To elucidate the role of guanosine in DNA strand breaks caused by low‐energy electrons (LEEs), theoretical investigations of the LEE attachment‐induced C? O σ‐bonds and N‐glycosidic bond breaking of 2′‐deoxyguanosine‐3′,5′‐diphosphate (3′,5′‐dGMP) were performed using the B3LYP/DZP++ approach. The results reveal possible reaction pathways in the gas phase and in aqueous solutions. In the gas phase LEEs could attach to the phosphate group adjacent to the guanosine to form a radical anion. However, the small vertical detachment energy (VDE) of the radical anion of guanosine 3′,5′‐diphosphate in the gas phase excludes either C? O bond cleavage or N‐glycosidic bond breaking. In the presence of the polarizable surroundings, the solvent effects dramatically increase the electron affinities of the 3′,5′‐dGDP and the VDE of 3′,5′‐dGDP?. Furthermore, the solvent–solute interactions greatly reduce the activation barriers of the C? O bond cleavage to 1.06–3.56 kcal mol?1. These low‐energy barriers ensure that either C5′? O5′ or C3′? O3′ bond rupture takes place at the guanosine site in DNA single strands. On the other hand, the comparatively high energy barrier of the N‐glycosidic bond rupture implies that this reaction pathway is inferior to C? O bond cleavage. Qualitative agreement was found between the theoretical sequence of the bond breaking reaction pathways in the PCM model and the ratio for the corresponding bond breaks observed in the experiment of LEE‐induced damage in oligonucleotide tetramer CGTA. This concord suggests that the influence of the surroundings in the thin solid film on the LEE‐induced DNA damage resembles that of the solvent.  相似文献   

6.
Hydrogen abstraction from the C1' and C2' positions of deoxyadenosine by a neighbouring uracil-5-yl radical in the 5'-AU*-3' DNA sequence is explored using DFT. This hydrogen abstraction is the first step in a sequence leading to single or double strand break in DNA. The uracil-5-yl radical can be the result of photolysis or low-energy electron (LEE) attachment. If the radical is produced by photolysis the neighbouring adenine will become a cation radical and if it is produced by LEE the adenine will remain neutral. The hydrogen abstraction reactions for both cases were investigated. It is concluded that it is possible for the uracil-5-yl to abstract hydrogen from C1' and C2'. When adenine is neutral there is a preference for the C1' site and when the adenine is a radical cation the C2' site is the preferred. If adenine is positively charged, the rate-limiting step when abstracting hydrogen from C1' is the formation of an intermediate crosslink between uracil and adenine. This crosslink might be avoided in dsDNA, making C1' the preferred site for abstraction.  相似文献   

7.
The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.  相似文献   

8.
To evaluate the possibility of the decomposition of 2-deoxyribose moiety of thymidine induced by low energy electrons (LEE) attachment, the transition states and the energy barriers of the bond breaking processes of the ribose of the nucleoside have been studied theoretically by applying the density functional theory with the double zeta basis sets (DZP++). The energy barriers for the breakage of the C-C bonds (C(1')-C(2'), C(2')-C(3'), C(3')-C(4'), and C(4')-C(5')) of the ribose group of the radical anion of thymidine are found to be high (ca. 42-57 kcal/mol). The total energies of the C-C bond-broken products are significantly higher than that of the radical anion dT(*-). The decomposition of dT(*-) through the C-C bond rupture is unlikely to take place. The rupture of the C(1')-O(4') bond of dT(*-) needs an activation energy as low as 10.4 kcal/mol. However, the reversed reaction (C(1')-O(4') bond formation) needs the activation energy low as 0.3 kcal/mol. Therefore, the intermediate product LM1(C1')-(O4') is unlikely to be stable and the C(1')-O(4') bond-broken is not favored. The activation energy of the C(4')-O(4') bond rupture process amounts to 20.5 kcal/mol. The total energy of the C(4')-O(4') bond broken product is about 6.5 kcal/mol lower than that of the reactant dT(*-). The subsequent N1-glycosidic bond breaking process is found to have a very low energy barrier. Therefore, the LEE-induced base release through the C(4')-O(4') bond rupture might be a possible pathway.  相似文献   

9.
The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O-H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.  相似文献   

10.
The gas-phase electron transmission (ET) and dissociative electron attachment (DEA) spectra are reported for the series of (bromoalkyl)benzenes C6H5(CH2)nBr (n = 0-3), where the bromine atom is directly bonded to a benzene ring or separated from it by 1-3 CH2 groups, and the dihalo derivative 1-Br-4-Cl-benzene. The relative DEA cross sections (essentially due to the Br- fragment) are reported, and the absolute cross sections are also evaluated. HF/6-31G and B3LYP/6-31G* calculations are employed to evaluate the virtual orbital energies (VOEs) for the optimized geometries of the neutral state molecules. The pi* VOEs, scaled with empirical equations, satisfactorily reproduce the corresponding experimental vertical electron attachment energies (VAEs). According to the calculated localization properties, the LUMO (as well as the singly occupied MO of the lowest lying anion state) of C6H5(CH2)3Br is largely localized on both the benzene ring and the C-Br bond, despite only a small pi*/sigma*C-Br interaction and in contrast to the chlorine analogue where the LUMO is predicted to possess essentially ring pi character. This would imply a less important role of intramolecular electron transfer in the bromo derivative for production of the halogen negative fragment through dissociation of the first resonant state. The VAEs calculated as the anion/neutral energy difference with the 6-31+G* basis set which includes diffuse functions are relatively close to the experimental values but do not parallel their sequence. In addition the SOMO of some compounds is not described as a valence MO with large pi* character but as a diffuse sigma* MO.  相似文献   

11.
Electron attachment to the 2'-deoxythymidine-5'-monophosphate-adenine pairs (5'-dTMPH-A and 5'-dTMP(-)-A) has been investigated at a carefully calibrated level of theory (B3LYP/DZP++) to investigate the electron-accepting properties of thymine (T) in the DNA double helix under physiological conditions. All molecular structures have been fully optimized in vacuo and in solution. The adiabatic electron affinity of 5'-dTMPH-A in the gas phase has been predicted to be 0.67 eV. Solvent effects greatly increase the electron capture ability of 5'-dTMPH-A. In fact, the adiabatic electron affinity increases to 2.04 eV with solvation. The influence of the solvent environment on the electron-attracting properties of 5'-dTMPH-A arises not only from the stabilization of the corresponding radical anion through charge-dipole interactions, but also by changing the distribution of the unpaired electron in the molecular system. The unpaired electron is covalently bound even during vertical attachment, due to the solvent effects. Solvent effects also weaken the pairing interaction in the thymidine monophosphate-adenine complexes. The phosphate deprotonation is found to have a relatively minor influence on the capture of electrons by the 5'-dTMPH-A species in aqueous solution. The electron distributions, natural population analysis, and geometrical features of the models examined illustrate that the influence of the phosphate deprotonation is limited to the phosphate moiety in aqueous solution. Therefore, it is reasonable to expect that electron attachment to nucleotides will be independent of monovalent counterions in the vicinity of the phosphate group in aqueous solution.  相似文献   

12.
The temporary anion states of isothiocyanates CH3CH2=C=S (and CH3CH2N=C=O for comparison), C6H5CH2N=C=S, and C6H5N=C=S are characterized experimentally in the gas phase for the first time by means of electron transmission spectroscopy (ETS). The measured vertical electron attachment energies (VAEs) are compared with the virtual orbital energies of the neutral-state molecules supplied by MP2 and B3LYP calculations with the 6-31G* basis set. The calculated energies, scaled with empirical equations, reproduce satisfactorily the experimental VAEs. The first VAE is also closely reproduced as the total energy difference between the anion and neutral states calculated at the B3LYP/6-31+G* level. Due to mixing between the ring and N=C=S pi-systems, C6H5N=C=S possesses the best electron-acceptor properties, and its lowest-lying anion state is largely localized at the benzene ring. The anion states with mainly pi*C=S and pi*N=C character lie at higher energy than the corresponding anion states of noncumulated pi-systems. However, the electron-acceptor properties of isothiocyanates are found to be notably larger than those of the corresponding oxygen analogues (isocyanates). The dissociative electron attachment (DEA) spectra show peaks close to zero energy and at 0.6 eV, essentially due to NCS- negative fragments. In spite of the energy proximity of the first anion state in phenyl isothiocyanate to the DEA peak, the zero-energy anion current in the benzyl derivative is about 1 order of magnitude larger.  相似文献   

13.
In this theoretical study we have investigated the effect of low-energy electrons attached onto a 3'-guanine monophosphate, 3'-GMP, in the gas phase and in aqueous solution. DFT calculations with B3LYP/DZP++ were performed to study the C3'-O3' bond break of a 3'-GMP radical anion. Our results show that low-energy electrons, if attached to a 3'-GMP with a neutrally charged phosphate group, can easily induce a C3'-3' bond break in both the gas phase and aqueous solution. The activation energy was found here to be 10.3 kcal/mol in the gas phase and, even lower, 5.3 kcal/mol in aqueous solution. In comparison with calculated activation energies for other nucleotides the 3'-GMP has the lowest energy barrier in aqueous solution.  相似文献   

14.
Density functional theory calculations were performed to evaluate the antioxidant activity of delphinidin, taking into account its acid/base equilibrium. The conformational behavior of both the isolated and the aqueous solvation species (simulated with the polarizable continuum model) were analyzed at the B3LYP/6-31++G(d,p) level, considering the cationic, neutral, and anionic forms, the latter two forms consisting of diverse tautomers. The analysis of their electron density distributions, using the quantum theory of atoms in molecules, reveals several facts that are not in line with their usual Lewis structures. The prototropic preferences observed in the gas phase and in solution are similar. Thus, in both phases, most stable tautomer of neutral delphinidin is obtained by deprotonating the hydroxyl at C4', and the most stable tautomer of the anion is obtained by deprotonating the hydroxyls at C4' and C5. All the planar conformers obtained display an intramolecular hydrogen bond (IHB) between O3 and H6'. Furthermore, the most stable tautomers of the neutral and anionic forms display two IHBs between O4' and H3' and H5'. To obtain ionization potentials (IPs) and homolytic O-H bond dissociation enthalpies (BDEs), the corresponding radical species were optimized at the UB3LYP level. Heterolytic O-H bond dissociation enthalpies (proton dissociation enthalpies, PDEs) were also computed. The expected important antioxidant activity can be justified from these results. IP, O-H BDE, and O-H PDE values suggest that one-step H atom transfer rather than sequential proton loss-electron transfer or electron transfer-proton transfer would be the most favored mechanisms for explaining the antioxidant activity of delphinidin in nonpolar solvents as well as in aqueous solution.  相似文献   

15.
Effect of electron correlation on single strand breaks (SSBs) induced by low energy electron (LEE) has been investigated in a fragment excised from a DNA, viz., 2'-deoxycytidine-3'-monophosphate [3'-dCMPH] molecule in gas phase at DFT-B3LYP/6-31+G(d) accuracy level and using local complex potential based time dependent wave packet (LCP-TDWP) approach. The results obtained, in conjunction with our earlier investigation, show the possibility of SSB at very low energy (0.15 eV) where the LEE transfers from π? to σ? resonance state which resembles a S(N)2 type mechanism. In addition, for the first time, an indication of quantum mechanical tunneling in strand breaking is seen from the highest anionic bound vibrational state (χ(5)), which may have a substantial role during DNA damage.  相似文献   

16.
The energies of electron attachment associated with temporary occupation of the lower-lying virtual orbitals of cyanoacetic acid (CAA), proposed as a possible component of dye-sensitized solar cells, and its derivative methyl cyanoacetate (MCA) are measured in the gas phase with electron transmission spectroscopy (ETS). The corresponding orbital energies of the neutral molecule, supplied by B3LYP/6-31G(d) calculations and scaled using an empirically calibrated linear equation, are compared with the experimental vertical attachment energies (VAEs). The vertical and adiabatic electron affinities are also evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. Dissociative electron attachment spectroscopy (DEAS) is used to measure the total anion current as a function of the incident electron energy in the 0-4 eV energy range, and the negative fragments generated through the dissociative decay channels of the molecular anion are detected with a mass filter. In both compounds only two intense fragment anion currents are observed, that due to loss of a hydrogen atom from the molecular anion ([M - H](-)) and that due to formation of CN(-). In CAA the former signal displays a very sharp feature at 0.68 eV, assigned to a vibrational Feshbach resonance arising from coupling between a dipole bound anion state and a temporary σ* anion state.  相似文献   

17.
The reverse wobble and the reverse Hoogsteen adenine-cytosine mispairs regarding their radical cations and anions are studied with the hybrid three-parameter B3LYP density functional method and 6-31+G(d), 6-311+G(2df,2p) basis sets. Hydrogen bonding mispairs are remarkably influenced by electron attachment and ionization. Only one stronger hydrogen bond N6-H (in adenine)...N3 (in cytosine) exists in the radical pair, while the strengths of two N-H...N hydrogen bonds in the neutral pair are comparable. Geometrical coplanarity is found for the neutral and cationic pairs, in contrast to the anionic pairs in which the cytosine moiety exhibits significant deformation due to electron attachment. Dissociation energies for the neutral and radical pairs are slightly higher than those of the adenine-thymine pairs but much smaller than those of the guanine-cytosine pairs. Valence-bound anions of these two adenine-cytosine pairs are thermodynamically stable by 0.1-0.2 eV with respect to the neutral pairs. On the basis of the comparison between the experimental data of the solvated clusters and the calculated values, these two pairs can be quantitatively equivalent to the clusters in which each base is solvated by five water molecules.  相似文献   

18.
Loss of side chains from different amino acid residues in a model peptide framework of RGGGXGGGR under electron capture dissociation conditions were systematically investigated, where X represents one of the twenty common amino acid residues. The alpha-carbon radical cations initially formed by N-Calpha cleavage of peptide ions were shown to undergo secondary dissociation through losses of even-electron and/or odd-electron side-chain moieties. Among the twenty common amino acid residues studied, thirteen of them were found to lose their characteristic side chains in terms of odd-electron neutral fragments, and nine of them were found to lose even-electron neutral side chains. Several generalized dissociation pathways were proposed and were evaluated theoretically with truncated leucine-containing models using ab initio calculations at B3-PMP2/6-311++G(3df,2p)//B3LYP/6-31++G(d,p) level. Elimination of odd-electron side chain was associated with the initial abstraction of the hydrogen from the alpha-carbon bearing the side chain by the N-terminal alpha-carbon radical. Subsequent formation of alpha-beta carbon-carbon double bond leads to the elimination of the odd-electron side chain. The energy barrier for this reaction pathway was 89 kJmol-1. This reaction pathway was 111 kJmol-1 more favorable than the previously proposed pathway involving the formation of cyclic lactam. Elimination of even-electron side chain was associated with the initial abstraction of the gamma-hydrogen from the side chain by the N-terminal alpha-carbon radical. Subsequent formation of beta-gamma carbon-carbon double bond leads to the elimination of the even-electron side chain and the migration of the radical center to the alpha-carbon. The energy barrier for this fragmentation reaction was found to be 50 kJmol-1.  相似文献   

19.
The minimal essential section of DNA helices, the dinucleoside phosphate deoxyguanylyl-3',5'-deoxycytidine dimer octahydrate, [dGpdC](2), has been constructed, fully optimized, and analyzed by using quantum chemical methods at the B3LYP/6-31+G(d,p) level of theory. Study of the electrons attached to [dGpdC](2) reveals that DNA double strands are capable of capturing low-energy electrons and forming electronically stable radical anions. The relatively large vertical electron affinity (VEA) predicted for [dGpdC](2) (0.38 eV) indicates that the cytosine bases are good electron captors in DNA double strands. The structure, charge distribution, and molecular orbital analysis for the fully optimized radical anion [dGpdC](2)(·-) suggest that the extra electron tends to be redistributed to one of the cytosine base moieties, in an electronically stable structure (with adiabatic electron affinity (AEA) 1.14 eV and vertical detachment energy (VDE) 2.20 eV). The structural features of the optimized radical anion [dGpdC](2)(·-) also suggest the probability of interstrand proton transfer. The interstrand proton transfer leads to a distonic radical anion [d(G-H)pdC:d(C+H)pdG](·-), which contains one deprotonated guanine anion and one protonated cytosine radical. This distonic radical anion is predicted to be more stable than [dGpdC](2)(·-). Therefore, experimental evidence for electron attachment to the DNA double helices should be related to [d(G-H)pdC:d(C+H)pdG](·-) complexes, for which the VDE might be as high as 2.7 eV (in dry conditions) to 3.3 eV (in fully hydrated conditions). Effects of the polarizable medium have been found to be important for increasing the electron capture ability of the dGpdC dimer. The ultimate AEA value for cytosine in DNA duplexes is predicted to be 2.03 eV in aqueous solution.  相似文献   

20.
A recent paper by Hou et al. (Hou, R.; Gu, J.; Xie, Y.; Yi, X.; Schaefer, H. F. J. Phys. Chem. B 2005, 109, 22053) on 2'-deoxyadenosine-5'-phosphate (5'-dAMP) reports calculations on one-electron oxidation of the 5'-dAMP anion. The paper presents a very interesting observation that, for the radical produced by electron removal, the unpaired spin density resides on both the phosphate and the adenine base moieties. There are also indications that this radical has a weakened C5'-O5' bond, and it is said that this may be the origin of a single-strand break in DNA. New calculations have been performed to show that the spin density on the phosphate is dependent on the charge on the phosphate. The use of the B3LYP method with the 6-31G(d) basis set yields results very similar to those obtained with the much larger B3LYP/DZP++ basis set in computing the structures of one electron oxidized 5'-dAMP. New calculations on the isotropic hyperfine couplings in 5'-dAMP are presented to show under just what conditions one might expect to see small amounts of unpaired spin density on the phosphates. Results show that this may occur in gas-phase studies of nucleotides but, most likely, not in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号