首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulated emission depletion (STED) microscopy has become a powerful imaging and localized excitation method, breaking the diffraction barrier for improved spatial resolution in cellular imaging, lithography, etc. Because of specimen‐induced aberrations and scattering distortion, it is a great challenge for STED to maintain consistent lateral resolution deep inside specimens. Here we report on deep imaging STED microscopy using a Gaussian beam for excitation and a hollow Bessel beam for depletion (GB‐STED). The proposed scheme shows an improved imaging depth of up to about 155 μm in a solid agarose sample, 115 μm in polydimethylsiloxane, and 100 μm in a phantom of gray matter in brain tissue with consistent super resolution, while standard STED microscopy shows a significantly reduced lateral resolution at the same imaging depth. The results indicate the excellent imaging penetration capability of GB‐STED, paving the way for deep tissue super‐resolution imaging and three‐dimensional precise laser fabrication.

  相似文献   


2.
Intravital imaging of large specimens is intrinsically challenging for postembryonic studies. Selective plane illumination microscopy (SPIM) has been introduced to volumetrically visualize organisms used in developmental biology and experimental genetics. Ideally suited for imaging transparent samples, SPIM can offer high frame rate imaging with optical microscopy resolutions and low phototoxicity. However, its performance quickly deteriorates when applied to opaque tissues. To overcome this limitation, SPIM optics were merged with optical and optoacoustic (photoacoustic) readouts. The performance of this hybrid imaging system was characterized using various phantoms and by imaging a highly scattering ex vivo juvenile zebrafish. The results revealed the system's enhanced capability over that of conventional SPIM for high‐resolution imaging over extended depths of scattering content. The approach described here may enable future visualization of organisms throughout their entire development, encompassing regimes in which the tissue may become opaque.

  相似文献   


3.
4.
Chou C  Peng LC  Chou YH  Tang YH  Han CY  Lyu CW 《Optics letters》2000,25(20):1517-1519
A method that uses a Zeeman laser in conjunction with a Glan-Thompson analyzer to image an object in a turbid medium is proposed. A heterodyne signal is generated only when the scattering photons are partially polarized, and the spatial coherence is not seriously degraded after the signal propagates in the turbid medium. A system combining polarization discrimination with optical coherence detection to image the object in a scattering medium is successfully demonstrated. The medium is a solution of polystyrene microspheres measuring 1.072 mum in diameter suspended in distilled water contained in a 10-mm-thick quartz cuvette. The advantages of this optical system, including better selectivity of the weak partially polarized scattering photons and better imaging ability in higher-scattering media, are discussed.  相似文献   

5.
We recently proposed and developed a novel transillumination laser computed tomography (CT) imaging system using a fiber-optic method based on coherent detection imaging (CDI) for biomedical use. Use of optical fibers enables portability and robustness against environmental changes in a room, such as variable temperature, air-flow shifts, and unexpected vibrations. In addition, motion-artifact-free images can be obtained because measurements can be performed with the object fixed. In the present paper, we experimentally investigate in detail the fundamental imaging properties of the system, which has a spatial resolution of 500 μm, a dynamic range of approximately 120 dB, and a minimum-detectable-optical power of 10−14W as a result of the excellent properties of the heterodyne detection. Based on experimental observations, the proposed system can reconstruct tomographic images of highly scattering objects in the transillumination mode, similar to X-ray CT, at sub-millimeter spatial resolution and with quantitativeness. Finally, we demonstrate with experiments using a physical phantom that the imaging system possesses high resolution and quantitative imaging abilities for highly scattering objects.  相似文献   

6.
7.
The high precision displacement measurement in nanoscale is crucial to many applications. We present a heterodyne interferometry with differential phase to amplitude conversion scheme for displacement measurement in nanoscale. In this approach, the differential phase introduced by the displacement is converted into the amplitudes of heterodyne signals in quadrature. Meanwhile, the heterodyne signals in phase quadrature are also achieved so that the displacement can be determined from the amplitude ratio of the quadrature signals, and the direction of displacement can be determined from the phase quadrature. Since the differential phase to quadrature amplitude conversion is achieved through the optical addition and subtraction by polarization tuning, which are based on differential detection concept. Thus the proposed method benefits from the features of differential detection with common phase noise and correlated amplitude noise rejection and that of quadrature detection with real time and wide dynamic range of phase measurement. To demonstrate the capability of proposed method in differential phase measurement, we measure the displacement drove by a commercially available PZT pusher and found close agreement between the experiment and the theory. The experimental evidence of noise suppression is also found with spectral measurements, which demonstrates the resolution of displacement measurement at 60 pm and minimum detectable differential phase of 5.6 × 10−6 rad/ over 50 kHz.  相似文献   

8.
Acousto-optical coherence tomography (AOCT) consists in using random phase jumps on ultrasound and light to achieve a millimeter resolution when imaging thick scattering media. We combined this technique with heterodyne off-axis digital holography. Two-dimensional images of absorbing objects embedded in scattering phantoms are obtained with a good signal-to-noise ratio. We study the impact of the phase modulation characteristics on the amplitude of the acousto-optic signal and on the contrast and apparent size of the absorbing inclusion.  相似文献   

9.
A circularly polarized heterodyne light beam is incident on a thin metal film, causing successive reflections and refractions to occur at the two sides of the thin film. The phase difference between p- and s-polarizations of the multiple-beam interference signal can be measured accurately with an analyzer and heterodyne interferometry. The phase difference depends on the azimuth angle of the analyzer, the complex refractive index and the thickness of the thin metal film. The measured values of the phase differences under three different azimuth angles of the analyzer can be substituted into the special equations derived from Fresnels equations and multiple-beam interference. Hence, the complex refractive index and the thickness of the thin metal film can be estimated by using a personal computer with a numerical analysis technique. Because of its common-path optical configuration and its heterodyne interferometric phase measurement, this method has many merits, such as high stability against surrounding vibrations, high resolution and easy operation. PACS 78.66.Bz; 78.20.Ci; 07.60.Cy  相似文献   

10.
Quantitative phase imaging (QPI), a method that precisely recovers the wavefront of an electromagnetic field scattered by a transparent, weakly scattering object, is a rapidly growing field of study. By solving the inverse scattering problem, the structure of the scattering object can be reconstructed from QPI data. In the past decade, 3D optical tomographic reconstruction methods based on QPI techniques to solve inverse scattering problems have made significant progress. In this review, we highlight a number of these advances and developments. In particular, we cover in depth Fourier transform light scattering (FTLS), optical diffraction tomography (ODT), and white‐light diffraction tomography (WDT).

  相似文献   


11.
Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68?±?18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate.
Graphical abstract ?
  相似文献   

12.
13.
Sonoluminescent tomography of strongly scattering media   总被引:1,自引:0,他引:1  
Wang LV  Shen Q 《Optics letters》1998,23(7):561-563
A novel optical imaging technique called sonoluminescent tomography was developed for cross-sectional imaging of strongly scattering media noninvasively. Sonoluminescence, which was generated internally in the medium by cw ultrasound, was used to produce a two-dimensional image of an object embedded in a scattering medium by means of raster scanning the medium. The image had a high contrast and good spatial resolution. The spatial resolution was limited by the focal-spot size of the ultrasound, and one could improve the resolution by tightening the focus. This inexpensive imaging technique has potential applications in medicine and other fields related to scattering media.  相似文献   

14.
The noise equivalent power of optical heterodyne detection at 10.6 m has been measured with a method based on Raman-Nath diffraction of a CO2 laser beam. One of the frequency shifted first order diffracted beams is used as the signal radiation. The local oscillator radiation is obtained by splitting off a part of the laser beam incident upon the device used for the acoustooptic diffraction. The signal power can be varied over a large dynamic range by changing the acoustic input power. A study of the probable errors shows that the total error in the NEP measurement is less than 30%.  相似文献   

15.
A high-power, twin-frequency, optically-pumped, far-infrared (FIR) laser has been developed at UCLA for diagnostic application on the TEXT tokamak. The source is operated at 245 GHz (=1.22 mm) for heterodyne scattering measurements and 694 GHz (=432 m) for high resolution interferometry. Future plans include a 30 channel interferometer/polarimeter operating at 694 GHz to accurately determine current profiles.  相似文献   

16.
The methods of time-resolved laser optoacoustic tomography of inhomogeneous media and related problems are reviewed. Time-resolved laser optoacoustic tomography allows one to measure the distribution of light absorption in turbid media with depth resolution up to several microns in real time. The theory of laser excitation of acoustic waves by absorbing of light in particles, dispersed in transparent, light-absorbing or scattering media, is developed. The distribution of light absorption can be obtained from the temporal course of acoustic pressure. Two schemes of acoustic wave detection — in the medium under testing (direct detection) and in transparent medium, coupled to the investigated one (indirect detection) — are discussed. In both cases the reconstruction of light absorption can be made by simple calculations. Test experiments with homogeneous and layered media confirm the proposed theoretical models and the possibility of using the proposed experimental schemes. Light absorption in homogeneous, inhomogeneous media and in absorbing particles dispersed in turbid media was investigated. The experimental setup allows one to measure the absorption coefficients over the range 1-500 cm–1 with the depth resolution 10–15 m over the depth 1–1.5 mm.  相似文献   

17.
The coherent detection imaging (CDI) technique based on the optical heterodyne detection method enables selective filtering of the directional coherent retaining emergent photons from biological tissues with a highly scattering nature. Therefore, the CDI can acquire on-axis information in the transillumination mode and use the same data-acquisition protocol and reconstruction algorithm as those in X-ray computed tomography (CT). Although the CDI-based laser CT cannot image thick subjects such as the head and chest, it can delineate subjects with a thickness up to several cm at a spatial resolution of sub-millimeters. We are planning to apply the technique to early diagnosis of rheumatoid arthritis (RA). Here, we performed an experiment using mice to confirm the feasibility. We compared in vivo CT images at the level of ankle joints of two mice, one normal and the other with collagen induced arthritis (CIA) as an RA model, and demonstrated that there occur significant discrepancies between the two distributions of image intensities, i.e., reconstructed scattering coefficients in each region of interest (ROI) prepared. We suggest that combining the morphological information with the quantitative information can be effective for early diagnosis of bone diseases and disorders such as rheumatoid arthritis.  相似文献   

18.
Due to the broad scattering spectral profiles, localized surface plasmon resonances (LSPRs) of Pd nanoparticles have low resolution and limited sensitivity for hydrogen detection. In this work, we use a simple light‐irradiation method to demonstrate that free‐space light can be efficiently coupled into and from the microfiber whispering‐gallery modes (WGMs) by the Pd nanoantennas. The nanoantenna–microfiber cavity system provides strong intermodal coupling between LSPRs and WGMs, and induces significant modulation of the scattering spectra. A measured full width at half‐maximum of 3.2 nm at 622.7 nm is obtained, which is the narrowest in Pd nanoparticle‐based LSPR structures reported up to now. The ultranarrow resonances offer enhanced sensitivity to hydrogen gas detection with a figure of merit reaching ∼2.22. Other advantages of the Pd nanoantenna–microfiber cavity system including independence of precise alignment of excitation light, large tunability of the resonant wavelengths, easy and low‐cost fabrication of the system, have also been demonstrated.

  相似文献   


19.
Surface-enhanced Raman scattering (SERS) is greatly structure-dependent on the absorbed nanoparticles. Nanostructures with different novel morphologies show different Raman enhancement factor orders of magnitude. Herein, a unique nanostructure with fruitful SERS-active sites, composed of hollow interiors and thorns which named as hollow sea-urchin gold nanoparticles (HSU-GNPs), was synthesized by using a one-pot galvanic replacement method. And the corresponding morphologies and optical properties were characterized by TEM images and absorption spectra. Importantly, the synthetic parameters of HSU-GNPs were optimized to obtain a superior SERS performance by analyzing the formation mechanism and the SERS spectra of R6G-labeled HSU-GNPs which obtained at different concentrations of AgNO3. Furthermore, the SERS-based application of HSU-GNPs was performed on the dose-response detection of thiram. The experimental result shows this detection strategy is available for thiram with decent sensitivity and reproducibility, which suggests that it is an excellent candidate for the detection of pesticides.
Graphical abstract This study reports a low-cost and easy-operated pesticide residues detection method based on hollow sea-urchin gold nanoparticles using SERS.
  相似文献   

20.
During the past decade coherent anti‐Stokes Raman scattering (CARS) microscopy has evolved to one of the most powerful imaging techniques in the biomedical sciences, enabling the label‐free visualization of the chemical composition of tissue in vivo in real time. While the acquisition of high‐contrast images of single cells up to large tissue sections enables a wide range of medical applications from routine diagnostics to surgical guidance, to date CARS imaging is employed in fundamental research only, essentially because the synchronized multiple wavelength pulsed laser sources required for CARS microscopy are large, expensive and require regular maintenance. Laser sources based on optical fibers can overcome these limitations combining highest efficiency and peak powers with an excellent spatial beam profile and thermal stability. In this review we summarize the different fiber‐based approaches for laser sources dedicated to coherent Raman imaging, in particular active fiber technology and passive fiber‐based frequency conversion processes, i.e. supercontinuum generation, soliton self‐frequency shift and four‐wave mixing. We re‐evaluate the ideal laser parameters for CARS imaging and discuss the suitability of different laser concepts for turn‐key operation required for routine application in clinics.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号