首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative and comprehensive knowledge of leaf fluorescence is required for the interpretation of fluorescence signals at the canopy level and also for the modelling of leaf and canopy fluorescence. In this work we present full range fluorescence excitation and emission spectra of intact leaves, expressed in units of apparent spectral fluorescence yield, from both the adaxial and the abaxial sides of the leaves, and for both front-side and back-side geometries. Emission spectra were measured for incident radiations in the blue and the green spectral range. The red/far-red fluorescence ratio depended on the measurement geometry and on the excitation wavelength. Excitation spectra were measured for emissions at 687 and 760 nm. When the abaxial side was illuminated, the measured spectra always had a larger intensity compared to adaxial side that is explained by the higher scattering of the spongy tissues. At 760 nm, the spectra had the same shape for front-side and back-side geometry, indicating that scattering predominated. At 687 nm, the shape of the spectra was very different for front-side and back-side geometry due to re-absorption of red fluorescence within the leaf. The comparison of excitation spectra measured from the adaxial or the abaxial side revealed differences in carotenoid absorption.  相似文献   

2.
A growth-chamber experiment was conducted to evaluate whether ethylenenediurea (EDU), a chemical shown to be protective against ozone pollution, could ameliorate foliar damage induced by ultraviolet-B (UV-B) radiation exposure in 'Roanoke' soybean (Glycine max L.), a UV-B-sensitive cultivar, and whether these effects could be discriminated using fluorescence (F) observations. The experiment had four treatment groups: control; biologically effective UV-B (18 kJ m(-2) day(-1)); EDU (500 micromol mol(-1)); and both UV-B and EDU (UV/EDU). Measurements included photosynthetic pigments, F image system (FIS) images of adaxial surfaces in four spectral regions (blue, green, red and far-red) and F emission spectra of the pigment extracts produced at two excitation wavelengths, 280 nm (280EX) and 380 nm (380EX). Several F ratios from 280EX, 380EX and the FIS images successfully separated the low UV vs high EDU group responses based on means alone, with intermediate values for controls and the combined UV/EDU groups. A UV-B/blue emission ratio, F315/F420 (280EX), was correlated with chlorophyll content (microg cm(-2))(R = 0.88, P < 0.001), as was a ratio of emissions at two UV-A wavelengths: F330/F385 (280EX) (R = 0.87). These two 280EX ratios were also linearly correlated with emission ratios produced by 380EX, such as the far-red/green ratio, F730/F525 (380EX) (R = 0.92, P < 0.001), and clearly distinguished the UV-B and EDU groups separately, and which bracketed the similar intermediate responses of the UV/EDU and control groups. The FIS images additionally captured the following anatomical spatial patterns across the leaf surfaces: (1) emissions of UV-B-irradiated leaves were more uniform but lower in intensity than those of other groups; and (2) emissions of EDU-treated leaves exhibited the greatest variation in spatial patterns because veins had elevated blue F and leaf edges had enhanced red and far-red F. This experiment supports the hypothesis that EDU substantially ameliorated UV-B damage to foliage, a result that relied on the combined use of FIS images and emission spectra.  相似文献   

3.
A series of 2-pyrazolines have been synthesized from α, β unsaturated ketones and hydrazine hydrate with acetic/formic acid in ethanol/DMSO. The structures of 2-pyrazolines have been established by spectroscopic techniques i.e. UV, IR, (1)H NMR, (13)C NMR and micro element analysis. Fluorescence spectra were recorded in the solution at fixed concentration and same excitation wavelength at 290 nm. The absorption band positions of all the compounds broadly lie between 280 and 336 nm and fluorescence band positions in the range between 300 and 370 nm, the near ultraviolet region.  相似文献   

4.
Ag nanoparticles in water phase have been synthesized employing the electro-exploding wire technique. A surface plasmon peak is observed at 400nm, characteristic of the Ag nanoparticles. A fluorescence emission peak is recorded at 300nm for excitation wavelengths in two different ranges 215-230 and 255-280nm. The position of the fluorescence peak remains fixed, irrespective of the excitation wavelength employed. These are assigned to electronic transition from different higher excited states to d levels of the Ag nanoparticles. In concomitant with these, there are two resonant absorptions at 5.76 and 4.59eV as evident from the fluorescence excitation spectra.  相似文献   

5.
以巯基乙酸为稳定剂,通过控制反应温度、反应时间及pH值,在水相中合成了稳定的受激发出紫光、蓝光、绿光、黄光和红光的CdS量子点;通过紫外可见吸收光谱、荧光光谱和X射线衍射谱(XRD)对产物的光学性能和晶体结构进行了表征,结果表明所合成的CdS量子点分散性较好,量子产率为8%,为立方晶型,粒径约1 nm;利用荧光倒置显微镜观察了量子点在洋葱内表皮细胞膜上聚集及受激发射荧光行为,实现细胞膜初步标记.  相似文献   

6.
Luminescence emission and excitation spectra have been obtained for DNA films at 77 K under vacuum ultraviolet excitation (150–280 nm). The emission spectra, which cover the wavelength range 310 to 490 nm, consists of two components, a short-lived component around 350 nm which is attributed to fluorescence and a longer-lived component around 410 nm believed to be phosphorescence. The excitation spectra, as functions of emission wavelength, are similar in profile with a fairly broad peak around 9240–260 nm) with a shoulder around 200 nm followed by a gradual but constant decrease into the vacuum ultraviolet region of the spectrum. No evidence of autoionization was seen in the region investigated.  相似文献   

7.
In order to test whether lignin fluorescence originates from discrete fluorophores, fluorescence emission spectra of the lignin model dehydrogenative polymer (DHP) were analyzed by the band deconvolution method and time-resolved analysis of both the excitation and emission spectra. Two series of 22 fluorescence emission spectra of DHP in chloroform/methanol (3:1, v/v) solution, and as a solid suspension in water, were deconvoluted into three fluorescence and one Raman Gaussian components. Emission spectra were obtained by stepwise variation of the excitation wavelength from 360 to 465 nm. Deconvolution was performed by nonlinear fitting of all three Gaussian parameters: area, width and position. Position of all components in a series was treated as a random variable and its approximate probability distribution (APD) calculated from a series of histograms with increasing number of abscissa intervals. A five peak multimodal APD profile was obtained for both series of DHP emission spectra. The mean fluorescence lifetime varied with wavelength both in the emission and the excitation decay-associated spectra (DAS), where four kinetic components were resolved. The shapes of the excitation spectra of the four components were quite different and gradually shifted bathochromically. The multicomponent nature of the DHP emission spectra along with the changes in the mean fluorescence lifetime and the form of the excitation DAS of the four components give evidence of the heterogeneous origin of fluorescent species emitting in the visible.  相似文献   

8.
A lamp‐based fluorescence detection (Flu) system for CE was extended with a wavelength‐resolved (WR) detector to allow recording of full protein emission spectra. WRFlu was achieved using a fluorescence cell that employs optical fibres to lead excitation light from a Xe‐Hg lamp to the capillary window and protein fluorescence emission to a spectrograph equipped with a CCD. A 280 nm band pass filter etc. together with a 300 nm short pass cut‐off filter was used for excitation. A capillary cartridge was modified to hold the detection cell in a commercial CE instrument enabling WRFlu in routine CE. The performance of the WRFlu detection was evaluated and optimised using lysozyme as model protein. Based on reference spectral data, a signal‐intensity adjustment was introduced to correct for transmission losses in the detector optics that occurred for lower protein emission wavelengths. CE‐WRFlu of lysozyme was performed using BGEs of 50 mM sodium phosphate (pH 6.5 or 3.0) and a charged‐polymer coated capillary. Using the 3‐D data set, signal averaging over time and emission‐wavelength intervals was carried out to improve the S/N of emission spectra and electropherograms. The detection limit for lysozyme was 21 nM, providing sufficient sensitivity to obtain spectral information on protein impurities.  相似文献   

9.
Abstract— An introduction to the fundamental characteristics of synthetic melanin fluorescence is presented. The particular difficulties associated with the detection and reduction of the relatively weak signal are discussed and a technique is described for correcting the fluorescence spectra for attenuation of the excitation and emission beams. Spectra are reported for the excitation wavelength range 340–400 nm and an emission range of 360–560 nm. The concentration dependence of the corrected fluorescence signal is examined and is shown to be linear. The variation of the fluorescence spectra with excitation wavelength suggests a two-component fluorescence, for the wavelength range studied. The presence of an isosbestic point in the spectra is used to identify the fluorophores as components of a reaction equilibrium. The possible relationship of this equilibrium to that associated with the melanin photo ESR is discussed  相似文献   

10.
The fluorescence properties of graphene oxide (GO) was studied by recording the fluorescence lifetime, fluorescence emission, and excitation spectra, as well as UV-visible and near-IR absorption spectra. For the first time, we showed that a blue band (ca. 440 nm) and a long wavelength (LW) band (ca. 700 nm) are coexistent, which can be recorded simultaneously by controlling concentration, excitation wavelength, and pH values. Two bands are closely related by the protonation or deprotonation of GO. The blue band is favored by low GO concentration, short excitation wavelength, and high pH value, while the LW band is favored by low pH and long excitation wavelength. To reveal the nature of the dual emission of GO, the fluorescence lifetimes under various conditions were also measured. The blue band contains three emitting components; one of them has a lifetime as long as 10 ns, and its emitting intensity is fairly sensitive to pH, showing the potential for applications in sensing H(+) and fluorescence lifetime imaging. Combining the results under various conditions, we conclude that the electronic transition for this component is very likely due to n-π* transition. The LW band contains two main emitting components (0.2 and 2.1 ns) that also appear in the blue band as minor contributors; the related emission is assigned to π-π* transition. In summary, GO emission is of broadband (300-1250 nm), long-lived, pH sensitive, and excitation wavelength dependent. This makes it easily tailored for versatile applications.  相似文献   

11.
The spatial distribution of the two-spotted spider mite Tetranychus urticae Koch is biased toward the lower surfaces of leaves as compared with the upper leaf surfaces on their host plants. Because of the deleterious effects of solar ultraviolet (UV) irradiation, we hypothesized T. urticae remains on lower leaf surfaces as an adaptation to avoid solar UV radiation (UVR). We examined the effects of solar UVR components on females and tested whether spatial distribution was associated with solar UVR avoidance. Attenuation of solar UVR using UV opaque film increased fecundity and reduced the movement of females from the upper to the lower leaf surfaces. In contrast, diverting solar UVR to the lower leaf surface using a light reflection sheet caused the mites to move from the lower to the upper leaf surfaces; however, attenuated UV reflection did not, suggesting that they occupy the lower leaf surface to avoid solar UVR. In monochromatic UVR tests, no eggs hatched when placed under 280–300 nm radiation, whereas almost all eggs hatched at 320–360 nm. Adult females, however, did not avoid wavelengths of 280 and 300 nm, but avoided 320–340 nm. We conclude that T. urticae exploit UVA information to avoid ambient UVB radiation.  相似文献   

12.
荧光分光光度法测定氨基糖苷类药物的研究   总被引:1,自引:0,他引:1  
氨基糖苷类药物如庆大霉素、小诺霉素、阿米卡星、卡那霉素本身有微弱荧光,在与邻苯二甲醛、2-巯基乙醇、曲拉通X-100作用后生成一种具有强荧光的衍生物。此衍生物在硼酸氯化钾缓冲溶液中最大激发波长和发射波长分别为340 nm和440 nm,在4.0×10-7mol/L~4.0×10-6mol/L浓度范围内,4种药物衍生物的荧光强度与浓度呈现良好的线性关系。回归方程的相关系数均大于0.9990,标出度均小于0.04μg/mL对实际样品进行了测定。  相似文献   

13.
There is no satisfactory mechanism to detect premalignant lesions in the upper aero-digestive tract. Fluorescence spectroscopy has potential to bridge the gap between clinical examination and invasive biopsy; however, optimal excitation wavelengths have not yet been determined. The goals of this study were to determine optimal excitation-emission wavelength combinations to discriminate normal and precancerous/cancerous tissue, and estimate the performance of algorithms based on fluorescence. Fluorescence excitation-emission matrices (EEM) were measured in vivo from 62 sites in nine normal volunteers and 11 patients with a known or suspected premalignant or malignant oral cavity lesion. Using these data as a training set, algorithms were developed based on combinations of emission spectra at various excitation wavelengths to determine which excitation wavelengths contained the most diagnostic information. A second validation set of fluorescence EEM was measured in vivo from 281 sites in 56 normal volunteers and three patients with a known or suspected premalignant or malignant oral cavity lesion. Algorithms developed in the training set were applied without change to data from the validation set to obtain an unbiased estimate of algorithm performance. Optimal excitation wavelengths for detection of oral neoplasia were 350, 380 and 400 nm. Using only a single emission wavelength of 472 nm, and 350 and 400 nm excitation, algorithm performance in the training set was 90% sensitivity and 88% specificity and in the validation set was 100% sensitivity, 98% specificity. These results suggest that fluorescence spectroscopy can provide a simple, objective tool to improve in vivo identification of oral cavity neoplasia.  相似文献   

14.
Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca2+-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions—ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.  相似文献   

15.
Eumelanin plays a variety of important physiological roles in human skin. However, its structure and fundamental properties still remain poorly understood. Although the absorbance of eumelanin is broad and reveals little about its structure, a variety of techniques have revealed the presence of a disordered array of chromophores within the melanin compound. In order to examine the fluorescence decay dynamics of these chromophores, time-resolved spectroscopy was applied to solutions of synthetic eumelanin and a melanin-like polymer of N-methyl,5-hydroxy,6-methoxyindole (N-Me-5H6MI). Solutions were excited with 80 fs laser pulses at 355, 370, 390 and 400 nm, and decay time courses were acquired at 20 nm intervals between 400 and 600 nm for each excitation wavelength. Decay profiles for both eumelanin and the polymer exhibited a characteristic multiexponential behavior with decay times between 0.5 and 15 ns, although steady-state spectra for the polymer exhibited only two peaks. The long-decay component in the polymer showed a significant decrease in both amplitude (30-5%) and decay time (14-6 ns) with increasing emission wavelength. In contrast, the amplitude and decay time in melanin increased slightly (10-15% and 7-10 ns, respectively) from 400 to 520 nm emission, at which point they leveled off. These trends were consistent for all excitation wavelengths. These results suggest that the multiexponential behavior of melanin fluorescence is characteristic of each oligomer within the eumelanin compound, and is consistent with the assertion that the diversity of constituents within eumelanin provides it with a robustness in spectral properties.  相似文献   

16.
The spectral characteristics of chlorophyll fluorescence and absorption during linear heating of barley leaves within the range 25-75 degreesC (fluorescence temperature curve, FTC) were studied. Leaves with various content of light harvesting complexes (green, Chl b-less chlorina f2 and intermittent light grown) revealing different types of FTC were used. Differential absorption, emission and excitation spectra documented four characteristic phases of the FTC. The initial two FTC phases (a rise in the 46-49 degreesC region and a subsequent decrease to about 55 degreesC) mostly reflected changes in the fluorescence quantum yield peaking at about 685 nm. A steep second fluorescence rise at 55-61 degreesC was found to originate from a short-wavelength Chl a spectral form (emission maximum at 675 nm) causing a gradual blue shift of the emission spectra. In this temperature range, a clear correspondence of the blue shift in the emission and absorption spectra was found. We suggest that the second fluorescence rise in FTC reflects a weakening of the Chl a-protein interaction in the thylakoid membrane.  相似文献   

17.
This work provides a dose-response model of UV-induced epidermal-stratum corneum thickening induced by irradiation at wavelength lambda. This model assumes that photobiochemical reaction(s) can give rise to hyperplasia in a manner which is predictable from a simple photochemical kinetic scheme. In this work, we derive an equation which predicts an approximately linear relationship between the logarithm of the increase in optical skin thickening measured at 320 nm (delta OD320) and total cumulative dose (DT) seen by the target cells in or near the basal layer. For each excitation wavelength lambda, the slope R(lambda) of the log delta OD320 vs DT plot is proportional to epsilon(lambda) phi rx, where epsilon(lambda) is the extinction coefficient for the target chromophore at excitation wavelength, and phi rx is the quantum yield for the photochemical reaction(s) leading to hyperplasia. Our data previously obtained from irradiation of SK-1 hairless mice with "monochromatic" UV wavebands at 280, 290, 300, 307 and 313 nm (Menter et al., 1988, Photochem. Photobiol. 47, 225-260.) and data from Sterenborg and van der Leun at 254 and 313 nm (1988, Photodermatology 5, 71-82) are in good agreement with this model, except for 254 and 280 nm excitation, which are greatly attenuated by epidermis-stratum corneum. For excitation at the latter wavelengths, "dark" regressive processes successfully compete with the "light" reaction(s) which lead to (pre)cancerous lesion. This difficulty notwithstanding, the "intrinsic" action spectrum for hyperplasia derived from these measurements indicates that the target chromophore preferentially absorbs in the UV-C region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The combination of remote/standoff sensing and laser-induced fluorescence (LIF) spectroscopy shows potential for detection of uranyl (UO2(2+)) compounds. Uranyl compounds exhibit characteristic emission in the 450-600 nm (22,200 to 16,700 cm(-1)) spectral region when excited by wavelengths in the ultraviolet or in the short-wavelength portion of the visible spectrum. We report a parametric study of the effects of excitation wavelength [including 532 nm (18,797 cm(-1)), 355 nm (28,169 cm(-1)), and 266 nm (37,594 cm(-1))] and excitation laser power on solid-state uranium compounds. The uranium compounds investigated include uranyl nitrate, uranyl sulfate, uranyl oxalate, uranium dioxide, triuranium octaoxide, uranyl acetate, uranyl formate, zinc uranyl acetate, and uranyl phosphate. We observed the characteristic uranyl fluorescence spectrum from the uranium compounds except for uranium oxide compounds (which do not contain the uranyl moiety) and for uranyl formate, which has a low fluorescence quantum yield. Relative uranyl fluorescence intensity is greatest for 355 nm excitation, and the order of decreasing fluorescence intensity with excitation wavelength (relative intensity/laser output) is 355 nm > 266 nm > 532 nm. For 532 nm excitation, the emission spectrum is produced by two-photon excitation. Uranyl fluorescence intensity increases linearly with increasing laser power, but the rate of fluorescence intensity increase is different for different emission bands.  相似文献   

19.
The potential of a recently developed lamp-based fluorescence detector for the analysis of underivatised proteins by capillary electrophoresis (CE) was investigated. Fluorescence detection (Flu) was achieved using optical light guides to deliver excitation light from a Xenon–Mercury lamp to the capillary detection window and to collect fluorescence emission and lead it to a photomultiplier. The performance of the detector was evaluated by monitoring the native fluorescence of the amino acid tryptophan and the proteins α-chymotrypsinogen A, carbonic anhydrase II, lysozyme and trypsinogen upon excitation at 280 nm. The test compounds were analysed using background electrolytes (BGEs) of sodium phosphate at pH 3.0 and 11.3. The results were compared to experiments of CE with UV absorbance detection. For tryptophan, a linear fluorescence response was obtained with a dynamic range of over 4 orders of magnitude, and a limit of detection (LOD) of 6.7 nM. This LOD was a factor of 200 more favourable than UV detection at 280 nm, and a factor of 20 better than detection at low-UV wavelengths. All tested proteins showed linear fluorescence responses up to 250 μg/mL. LODs were typically in the 10–20 nM range. These LODs were a factor of 25 lower than for UV detection at 280 nm, and comparable to UV detection at low-UV wavelengths. Overall, Flu yields much more stable baselines, especially with a BGE of high pH. The applicability of CE–Flu is demonstrated by the analysis of a degraded protein mixture, and of an expired formulation of the protein drug human growth hormone, indicating that protein degradation products can be selectively detected.  相似文献   

20.
We report a new application of fluorescence spectroscopy for the identification and characterization of chemical species in complex environments. Simultaneous collection of a dispersed fluorescence spectrum for every step of the laser wavelength results in a two-dimensional spectrum of emission versus excitation wavelengths. This two-dimensional fluorescence (2DF) spectrum yields quick and intuitive assignments of a multitude of peaks in the separate fluorescence excitation and dispersed fluorescence spectra as belonging to the same species. We demonstrate the technique with the measurement of 2DF spectra of a discharge of dilute benzene into a supersonic free jet. A multitude of rovibronic bands due to the C(2) Swan and C(3) comet bands are immediately apparent and even unreported bands can be assigned intuituvely. Custom software filters are employed to enhance or reject emission from one or the other carrier to obtain excitation spectra arising from purely one carrier, or even a specific spectral component of a single carrier. The very characteristic 2DF fingerprints of C(2) and C(3) permit identification of another unidentified species in the discharge that absorbs at 476 nm, coincident with one of the diffuse interstellar bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号