首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The elastic modulus and tg δ of poly(2-hydroxyethyl methacrylate) (PHEMA) and its hydrogels have been measured over, the frequency range 0.3–30Hz and the temperature range 120–450 K. The mechanical spectra reveal the presence of a low-temperature γ-relaxation plus a shoulder (β-relaxation) that merges into the α-relaxation. The absorbed water lowers the temperature and rises the hight of the lowest temperature peak (the γ-peak for dry PHEMA) while lowering both temperature and height of the α-peak. This behaviour is interpreted in terms of hydrogen-bonding effects between water and polymer which weaken the intra- and/or interchain interactions. Furthermore, the calorimetric analysis in dry polymer is consistent with the mechanical behaviour in the higher-temeprature region. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

2.
Summary Differential scanning calorimetric measurements in the early stage of isothermal crystal growth of polyethylene oxide are analysed in the light of irreversible thermodynamics. An accurate evaluation of the equilibrium melting temperature is done by fitting the thermograms obtained at different undercoolings and referring to the activation energy values already known from the literature. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

3.
Summary A queous solutions of highly charged flexible polyelectrolytes phase separate in the presence of multivalent counterions. We present a theoretical model which explains this behavior in terms of electrostatic bridging between monomers via the condensed counterions. The ?Polymer Reference Interaction Site Model? with the Debye-Hückel closure (equivalent to the ?Random Phase Approximation?) is sufficient to understand the crucial role of the valency of the counterions, to predict a demixion above a given valency and a redissolution of the precipitate in excess of added salt. The model successfully reproduces the different experimental phase diagrams of polystyrene sulfonate suspensions with different added electrolytes. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

4.
Neutron scattering from equilibrium-swollen networks   总被引:1,自引:0,他引:1  
Small-angle neutron scattering measurements were performed on end-linked poly (dimethylsiloxane) (PDMS) networks swollen to equilibrium with d-benzene. Comparison was made with equivalent concentration PDMS solutions. Equilibrium-swollen networks consistently displayed a linear scattering regime at low q followed by a good-solvent-like scaling regime at high q in agreement with the predictions of the Gel Tensile Blob (GTB) model. Data are fit using the unified function modified for the GTB model (3-parameter fit). Equilibrium-swollen networks display a base structural size, the gel tensile-blob size, ξ, that was found to be independent of the molecular weight between crosslinks for the series of molecular weights studied, consistent with the predictions of the model. The length of the extended tensile structure, L, can be larger than the length of the fully extended network strand. The predicted scaling relationship for L, LQ1/2Navg, where Navg = (1/fNc2+1/4Ne2 , Q is the equilibrium swelling ratio, Nc is the molecular weight between crosslinks, Ne is the entanglement molecular weight and f is the crosslink functionality is in agreement with experimental results for the networks studied.  相似文献   

5.
Summary We discuss some recent theoretical studies of the kinetics of the collapse transition in homopolymers. An isolated polymer is modelled using computer simulation, and a time-dependent mean-field theory. The mean-field theory is analysed analytically for early stages, and for short polymers the equations are studied numerically. The results of simulation and theory are compared yielding, we argue, a consistent physical picture. Quantitative comparisons are not yet given, but seem relatively promising. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4– 1994.  相似文献   

6.
Summary The effects of the storage at room temperature of PEO-KSCN polymer electrolytes have been studied by differential scanning calorimetry (DSC) and dynamical mechanical analysis. It has been revealed that, over the explored time interval, the annealing causes small variations in the anharmonic and relaxation properties of the samples, which are to be ascribed to changes in the relative amount of the phases building up the structure. The elastic and anelastic characteristics show a well-defined dependence on the degree of crystallinity of the polymer, which grows slightly with increasing annealing time. The application of a simplified version of a quasi-harmonic model and of the Kolrausch-Williams-Watts stretched exponential function permits to describe the temperature behaviour of the elastic modulusE′ and to obtain an anharmonicity parameter characterizing the polymeric system. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

7.
Summary Electrical-impedance measurements have been made in the frequency range 5 Hz to10 MHz in pure poly(ethylene oxide) having a molecular weight of 600 000 from 254 K nearly up to the melting point of the crystalline phase (about 330 K). As the temperature approaches the melting point there are large increases in the realε′ and imaginaryε″ parts of the dielectric constant. The frequency dependence ofε′ is characterized by a primary-relaxation process, whose frequency increases with increasing temperature as a consequence of decrease of the average structural relaxation time. There is strong evidence that this low-frequency dispersion rises mainly from the diffusive transport of localised charge carriers rather than a purely orientation relaxation process. In addition the effects of hydrostatic pressure (0–25 Gpa) on the frequency dependences of the realε′ and imaginaryε″ parts of the dielectric constant have been measured in the same temperature range. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

8.
9.
10.
Summary Calorimetric measurements by DSC technique have been made in pure polyethylene glycol (PEG) and oxide (PEO) polymers having a very wide molecular-weight range (from 600 to 4000 000) and in PEO (MW 600 000)-NaSCN complexes. It was found that the melting temperature increases with increasing molecular weight, ranging from 293 K in the polymer with MW=600 to 340 K in that with MW=4000 000. The behaviour of the heats of fusion with increasing molecular weight reflects the trend expected in systems, in which the increase of the main chain length produces a relevant growth of the degree of crystallinity. A distinct maximum of the heat of fusion has been found at about MW=10000, this result being an evidence of the high amount of crystalline regions building up the structure of that system. The dependence of the melting temperature on molecular weight has been nicely accounted for by using the expression of Flory, deduced from the statistical theory of polymers having the most probable molecular-weight distribution. The addition of sodium thiocyanate to PEO modifies the morphology of the host polymer and, for salt concentrations higher than 0.03 molar fraction, gives rise to the formation of a PEO-salt crystalline complex characterized by a high melting temperature. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

11.
A density functional theory is proposed for nonuniform freely jointed tangential hard sphere polymer melts in which the bonding interaction is treated on the basis of the properties of the Dirac δ-function, thus avoiding the use of the single chain simulation in the theory. The excess free energy is treated by making use of the universality of the free energy density functional and the Verlet-modified (VM) bridge function. To proceed numerically, one of the input parameters, the second-order direct correlation function of a uniform polymer melt is obtained by solving numerically the Polymer-RISM integral equation with the Percus-Yevick (PY) closure. The predictions of the present theory for the site density distribution, the partition coefficient and the adsorption isotherm, near a hard wall or between two hard walls are compared with computer simulation results and with those of previous theories. Comparison indicates that the present approach is more accurate than the previous integral equation theory and the most accurate Monte Carlo density functional theories. The predicted oscillations of the medium-induced force between two hard walls immersed in polymer melts are consistent with the experimental results available in the literature. Received 18 April 2000  相似文献   

12.
We investigate a finite chain approximation, the non-Gaussian Tsallis distribution, to the polymeric network, which gives an improvement to the Gaussian model. This distribution presents some necessary characteristics, like a cutoff to the maximum chain length and a continuous limit to the Gaussian one for a large number of monomers. It also presents a simple quadratic structure that allows to generalize the Gaussian properties such as exact-moments calculation and Wick theorem. We obtain the free-energy density in its full tensorial structure.  相似文献   

13.
In this paper we investigate in a systematic way the influence of polydispersity in the block lengths on the phase behavior of AB-multiblock copolymer melts. As model system we take a polydisperse multiblock copolymer for which both the A-blocks and the B-blocks satisfy a Schultz-Zimm distribution. In the limit of low polydispersity the expressions for the vertex functions are clarified by using simple physical arguments. For various values of the polydispersity the phase diagram is presented, which shows that the region of stability of the bcc phase increases considerably with increasing polydispersity. The strong dependence of the periodicity of the microstructure on the polydispersity and on the interaction strength is presented. Received 2 July 1998  相似文献   

14.
Poly(ethylene oxide) (PEO) in the semi-crystalline state shows a reversible surface crystallization and melting; a temperature decrease leads to a certain crystal thickening, a temperature increase reversely to an expansion of the amorphous intercrystallite layers. Dynamic calorimetry provides a means to investigate the kinetics of the process. The structural rearrangement in the region of the crystalline-amorphous interface can only be accomplished if the chains can slide through the crystallites. One therefore expects the associated time to change with the crystallite thickness. Variations of the crystal thickness of PEO can be achieved by choosing different crystallization temperatures. We studied the effect of the crystal thickness employing temperature-modulated differential scanning calorimetry and heat wave spectroscopy, and by carrying out small-angle X-ray scattering experiments for the structural characterization. The effect of the crystal thickness is clearly observed. Results indicate that the sliding diffusion through the crystallites takes place by helical jumps of whole stems. Data yield the activation energy per unit length of the stems. Received 20 April 2001 and Received in final form 13 August 2001  相似文献   

15.
There are many experimental situations in which polymer chains are constrained or localised into a small region of space (e.g. melt chains confined to a “tube”, network chains pinned by crosslinks). We show that detailed consideration of the quenched variables is vital in these experiments. This paper provides a crucial link between microscopic models with localising constraints and scattering patterns by a generalisation of the Random Phase Approximation (RPA) which allows for quenched translational variables. A method is developed which deals with correlations between the quenched variables brought about by incompressiblity (for example, in a polymer melt there are correlations between tubes because of the interaction between chains). As an example, the generalised RPA is applied to models based on the Warner-Edwards picture of the tube. Theoretical results for a melt of H-shaped copolymers are compared with experimental scattering. Early results suggest that to fit the scattering we may be forced to relax one of the central assumptions of the tube model; that the tube deforms affinely, that all chains retract by the same amount or that the tube diameter does not couple to the strain. Received 26 October 1998 and Received in final form 19 March 1999  相似文献   

16.
Polyethylene (PE) pipes generally exhibit a limited lifetime, which is considerably shorter than their chemical degradation period. Slow crack growth failure occurs when pipes are used in long-distance water or gas distribution though being exposed to a pressure lower than the corresponding yield stress. This slow crack growth failure is characterized by localized craze growth and craze fibril rupture. In the literature, the lifetime of PE pipes is often considered as being determined by the density of tie chains connecting adjacent crystalline lamellae. But this consideration cannot explain the excellent durability of the recent bimodal grade PE for pipe application. We show in this paper the importance of the craze fibril length as the determining factor for the pipe lifetime. The conclusions are drawn from stress analysis. It is found that longer craze fibrils sustain lower stress and are deformed to a lesser degree. The mobility of the amorphous phase is found to control the amount of material that can be sucked in by the craze fibrils and thus the length of the craze fibrils. The mobility of the amorphous phase can be monitored by dynamic mechanical analysis measurements. Excellent agreement between the mobility thus derived and lifetimes of PE materials as derived from FNCT (full notch creep test) is given, thus providing an effective means to estimate the lifetime of PE pipes by considering well-defined physical properties.  相似文献   

17.
We have developed a molecular orientation control technique for polymers utilizing contact-mode atomic force microscopy (AFM). In this paper, we studied the molecular alignment mechanism of this technique by applying it to poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)). The resultant alignment and formed crystal size were strongly dependent on the temperature during the modification. They also depended on the scan line spacing of the modification. These results made the alignment mechanism clear. The obtained molecular alignment was stable against the heat treatment even at the temperatures just below Tm.  相似文献   

18.
Small angle neutron scattering of polyacrylamide solutions and gels is presented for different polymer and cross link concentrations. The gels are analyzed in connection with their elastic properties. For less than 11% of polymer concentration and for small cross link contents , it was found that the gels are no more heterogeneous than the solutions. This corresponds to the range of where the elastic modulus increases with . For larger cross link contents when the elastic modulus decreases if increases, the sample appears to be strongly heterogeneous with a large size distribution of the inhomogeneities. The results are compared with the recent model of Oshmyan and Benguigui of the elastic properties of the polyacrylamide gels. Thus a relation can be proposed between the observation of the inhomogeneities by scattering and the mechanical properties Received 30 December 1997 and Received in final form 26 June 1998  相似文献   

19.
The critical pH values for hydrogen-bonded interpolymer complexes of poly(N-vinylpyrrolidone) and poly(acrylic acid) in aqueous solutions were determined. The effect of polymer concentrations, molecular weights and addition of inorganic salts (NaCl and KCl) on the complexation was studied. Received 29 April 2002 and Received in final form 24 June 2002 Published online: 21 January 2003  相似文献   

20.
We consider a model of two (fully) compact polymer chains, coupled through an attractive interaction. These compact chains are represented by Hamiltonian paths (HP), and the coupling favors the existence of common bonds between the chains. We use a (n=0 component) spin representation for these paths, and we evaluate the resulting partition function within a homogeneous saddle point approximation. For strong coupling (i.e. at low temperature), one finds a phase transition towards a “frozen” phase where one chain is completely adsorbed onto the other. By performing a Legendre transform, we obtain the probability distribution of overlaps. The fraction of common bonds between two HP, i.e. their overlap q, has both lower () and upper () bounds. This means in particular that two HP with overlap greater than coincide. These results may be of interest in (bio)polymers and in optimization problems. Received 4 December 1998 and Received in final form 10 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号