首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel biomimetic surfactants based on cholesterol as the hydrophobic segment and poly[2-(methacryloyloxy)ethyl phosphorylcholine] (pMPC) as the hydrophilic segment were synthesized in the present study by atom transfer radical polymerization (ATRP) of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) using a cholesterol-based macroinitiator. The association behavior of cholesterol-block-poly[2-(methacryloyloxy)ethyl phosphorylcholine] (Chol-pMPCs) in aqueous solution was studied by (1)H NMR spectroscopy, fluorescence probe technique, and atomic force microscopy (AFM). The (1)H NMR spectrum of the polymer in CD(3)OD showed both the cholesterol group and the phosphorylcholine group while the cholesterol group did not appeared in the (1)H NMR spectrum of the polymer in D(2)O, which implied the formation of a micelle structure. Fluorescence excitation spectra of a pyrene probe solubilized in the aggregates of Chol-pMPCs suggested the presence of a critical micelle concentration (cmc) in water. The critical micelle concentrations of the polymers CMPC10, CMPC20 and CMPC40 were determined to be 7.27 x 10(-3), 13.47 x 10(-3), and 20.77 x 10(-3) mg . mL(-1), respectively. AFM images of the aggregates on mica suggested that the pMPC block formed the biocompatible micelle coronas and the cholesterol block formed the hydrophobic micelle cores. These new biomimetic diblock copolymers were evaluated as "stealthy" nanocapsules for the delivery of hydrophobic drugs. The anti-cancer drug adriamycin (ADR) was chosen as a hydrophobic drug to be incorporated into the inner core of the micelles and the morphology of the drug-loaded micelles were observed by AFM.  相似文献   

2.
A series of copolymers, poly(methylmethacrylate-co-2-methacryloyloxyethyl phosphorylcholine), with various compositions of methyl methacrylate (MMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were synthesized by radical copolymerization in a mixed solvent of ethanol and chloroform. The structures of the copolymers were confirmed by proton nuclear magnetic resonance and elemental analysis. The properties and morphologies of the copolymers were characterized by differential scanning calorimeter, scanning electron microscopy, and optical microscope. The adsorption of bovine serum albumin (BSA) and the adhesion of platelet on the surfaces of the copolymer membrane significantly decreased with increasing the MPC composition. The copolymers containing MPC above 18% showed excellent biocompatibility. Moreover, the relationship between the water structure and the biocompatibility was illustrated by changing quantity of the MPC in copolymers. The result showed that the amount of free water affected the platelet compatibility of the copolymer.  相似文献   

3.
We have characterized three diblock copolymers bearing zwitterionic phosphorylcholine and weak tertiary amine groups, namely, poly[((2-(methacryloyloxy)ethyl)phosphorylcholine)30- block-(2-(dimethylamino)ethyl methacrylate)60] (denoted as MPC30-DMA60, Mn=18,000), poly[((2-(methacryloyloxy)ethyl)phosphorylcholine)30- block-(2-(diethylamino)ethyl methacrylate)60) (denoted as MPC30-DEA60, Mn=20,000), and poly[((2-(methacryloyloxy)ethyl)phosphorylcholine)30- block-(2-(diisopropylamino)ethyl methacrylate)60) (denoted as MPC30-DPA60, Mn=21,000), by studying their surface tension and solution aggregation through a combined approach of surface tension measurement, dynamic light scattering, and small-angle neutron scattering. Our results show that larger tertiary amine substituents lead to an increasing tendency to form micellar aggregates, which is consistent with the increasing copolymer hydrophobicity. Thus, MPC30-DMA60 did not aggregate under the experimental conditions studied. The free chains exist in the form of thin cylinders, whose length decreases with copolymer concentration and solution temperature but increases with solution pH. The diameters of the MPC30-DMA60 cylinders remained almost constant at around 30 A under all the conditions studied. At the lower copolymer concentration of 0.5 wt %, the cylindrical lengths correspond to the persistence length of the copolymer backbone and are close to its full length, indicating a rather high rigidity. Further data analysis showed that, at the two higher concentrations of 2 and 4 wt %, the phosphorylcholine and amine blocks associate, inducing bending of the copolymer backbone. One backbone kink was required to satisfy all the constraints, including the dry volume of the copolymer. MPC30-DEA60 showed a similar trend of pH- and concentration-dependent conformational responses for the free copolymer, but in addition micellar aggregation occurred at pH 9. In contrast, MPC30-DPA60 exhibited significantly reduced solubility associated with strong aggregation, which is consistent with it being the most hydrophobic copolymer in the series.  相似文献   

4.
采用氯仿作为铺展溶剂,将嵌段共聚物聚苯乙烯-聚(4-乙烯基吡啶)(PS-b-P4VP)稀溶液铺展于空气与水界面上,利用Langmuir-Blodgett(LB)膜技术转移至固体基底.研究了不同的嵌段比、表面压和小分子1-芘丁酸(PBA)的加入对嵌段共聚物气液界面聚集组装的影响.研究发现随着亲水段(P4VP)的增加,聚集组装结构由纳米片状、带状转变成纳米条状、纳米点状结构.表面压对纯PS-b-P4VP聚集组装产生影响,表面压增大,组装体排列紧密;随着表面压的继续增大,单层聚集结构遭到破坏,发生堆叠.加入PBA小分子后,PBA与PS-b-P4VP形成氢键,形态发生明显变化,原来的片状结构转变为条状或点状结构.  相似文献   

5.
The aggregation behavior and the thermodynamics of binding between poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate) (PEO-b-PDEAEMA) block copolymers and plasmid DNA were examined. Binding between the polymer and DNA were confirmed by gel electrophoresis. The high affinity between the polymer and DNA was demonstrated through the ethidium bromide (EtBr) displacement assay, and the binding was found to be related to the stoichiometric balance between the amine group of the polymer and the DNA nucleotide molar ratio (N/P molar ratio). The light scattering and TEM results showed that, at low polymer concentration, the hydrodynamic radii (R(h)) of the polymer/DNA complexes was around 90 nm; however, at sufficiently high polymer concentration, the complexes condensed to around 35 nm induced by a structural rearrangement of the amphiphilic nature of the block copolymer. The isothermal titration calorimetric results showed that the binding between the polymer and DNA is driven by a large favorable enthalpy.  相似文献   

6.
Well-defined polymer brushes and block copolymer brushes consisting of 2-methacryloyloxyethyl phosphorylcholine (MPC) and glycidyl methacrylate (GMA) were prepared by surface-initiated atom transfer radical polymerization (ATRP). The polymer brushes were used for the immobilization of antibody fragments in a defined orientation. Pyridyl disulfide moieties were introduced to the polymer brushes via a reaction of epoxy groups in GMA units. Fab’ fragments were then immobilized onto these surfaces via a thiol-disulfide interchange reaction and the reactivity of antibodies with antigens was investigated. Antigen/antibody binding on the polymer brushes was more preferable than that on epoxysilane films as a control surface. Furthermore, the activity of the antibodies immobilized on the block copolymer brushes having biocompatible PMPC was greater than that on other surfaces that did not have PMPC in their structures.  相似文献   

7.
The main objective of this study was to evaluate the ability of folic acid-functionalized diblock copolymer micelles to improve the delivery and uptake of two poorly water-soluble anti-tumor drugs, tamoxifen and paclitaxel, to cancer cells through folate receptor targeting. The diblock copolymer used in this study comprised a hydrophilic poly[2-(methacryloyloxy)ethyl phosphorylcholine] (MPC) block, carrying at the chain end the folate targeting moiety, and a pH-sensitive hydrophobic poly[2-(diisopropylamino)ethyl methacrylate] (DPA) block (FA-MPC-DPA). The drug-loading capacities of tamoxifen- and paclitaxel-loaded micelles were determined by high performance liquid chromatography and the micelle dimensions were determined by dynamic light scattering and transmission electron microscopy. Cell viability studies were carried out on human chronic myelogenous leukaemia (K-562) and colon carcinoma cell lines (Caco-2) in order to demonstrate that drug-loaded FA-MPC-DPA micelles exhibited higher cytotoxicities toward cancer cells than unfunctionalized MPC-DPA micelles. Uptake studies confirmed that folate-conjugated micelles led to increased drug uptake within cancer cells, demonstrating the expected selectivity toward these tumor cells.  相似文献   

8.
Morphologies of polystyrene-block-poly(2-vinylpyridine) copolymer (S2VP) thin films, which are forming poly(2-vinylpyridine) cylinders in bulk phase, were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM) to account for their ordering behavior induced by solvent annealing. Initially, when the copolymer was dissolved in toluene, which is selective solvent for majority polystyrene (PS) blocks, and was spin-coated on Si substrates, dimple-type micellar structures of S2VP were formed. After the film was placed in a solvent-annealing chamber covered with a lid under the existence of chloroform, surface morphologies of S2VP were measured as a function of annealing time. In this study, it was found that the morphologies of S2VP thin film repeated the cycle of the creation and extinction of various morphologies on ordering process. Namely, S2VP exhibited the various transformations between different morphologies, including highly disordered state, cylinders normal to the plane, and cylinders parallel to the plane. Each of the morphologies observed here was employed as a template to synthesize gold (Au) nanoparticles or nanowires. The arrays of Au nano-objects were used to tune a surface plasmon resonance.  相似文献   

9.
The random coil conformation of an isolated conventional synthetic polymer chain was clearly imaged by atomic force microscopy (AFM). The sample used was a poly(styrene)-block-poly(methyl methacrylate) diblock copolymer. A very dilute solution of the copolymer with benzene was spread on a water surface. The structure thus formed on water was subsequently transferred and deposited onto mica at various surface pressures and observed under AFM. The AFM images obtained with films deposited at a low surface pressure (<0.1 mN/m) showed a single polystyrene (PS) block chain aggregated into a single PS particle with a single poly(methyl methacrylate) (PMMA) block chain emanating from the particle. Immediately after the deposition, the single PMMA block chain aggregated to form a condensed monolayer around the polystyrene particles. However, after exposing the deposited film to highly humid air for 1 day, the PMMA chains spread out so that the single PMMA block chain could be identified as a random coil on the substrate. The thin water layer formed on the mica substrate in humid air may enable the PMMA block chain to be mobilized on the substrate, leading to the conformational rearrangement from the condensed monolayer conformation to an expanded and elongated coil. The elongation of the PMMA chain was highly sensitive to the humidity; the maximum elongation was obtained at 79% relative humidity. The elongation was a slow process and took about 20 h.  相似文献   

10.
Sulfonated fluorinated multiblock copolymers based on high performance polymers were synthesized and evaluated for use as proton exchange membranes (PEMs). The multiblock copolymers consist of fully disulfonated poly(arylene ether sulfone) and partially fluorinated poly(arylene ether ketone) as hydrophilic and hydrophobic segments, respectively. Synthesis of the multiblock copolymers was achieved by a condensation coupling reaction between controlled molecular weight hydrophilic and hydrophobic oligomers. The coupling reaction could be conducted at relatively low temperatures (e.g., 105 °C) by utilizing highly reactive hexafluorobenzene (HFB) as a linkage group. The low coupling reaction temperature could prevent a possible trans‐etherification, which can randomize the hydrophilic‐hydrophobic sequences. Tough ductile membranes were prepared by solution casting and their membrane properties were evaluated. With similar ion exchange capacities (IECs), proton conductivity and water uptake were strongly influenced by the hydrophilic and hydrophobic block sequence lengths. Conductivity and water uptake increased with increasing block length by developing nanophase separated morphologies. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments revealed that the connectivity of the hydrophilic segments was enhanced by increasing the block length. The systematic synthesis and characterization of the copolymers are reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 214–222, 2010  相似文献   

11.
Novel biomimetic gelators with star diblock copolymer architectures have been synthesized by atom-transfer radical polymerization (ATRP). Two types of trifunctional ATRP initiator were used to polymerize 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] at 20 degrees C, followed by sequential monomer addition of various tertiary amine methacrylates or mixtures thereof. Poor living character was achieved using an amide-based trifunctional initiator, but the analogous triester initiator gave reasonably well-defined thermo-responsive and pH-responsive star diblock copolymers. The most effective thermo-responsive gelators were obtained by the statistical terpolymerization of 2-(dimethylamino)ethyl methacrylate [DMA], 2-(diethylamino)ethyl methacrylate [DEA], and a monomethoxy-capped poly(propylene oxide) methacrylate [PPOMA], whereas pH-responsive gelators were prepared using 2-(diisopropylamino)ethyl methacrylate [DPA] as the second monomer. Star diblock copolymer gelators that were both thermo-responsive and pH-responsive were obtained by the statistical copolymerization of DMA with DPA. Copolymer compositions were assessed by 1H NMR spectroscopy, and the molecular weight distributions of the three-arm star MPC homopolymer precursors were assessed by aqueous gel permeation chromatography. Static light scattering was used to obtain weight-average molecular weights of selected star diblock copolymers and rheological measurements and variable-temperature 1H NMR were used to probe the onset of gelation.  相似文献   

12.
A well-defined, double-hydrophilic diblock copolymer comprising poly[2-(methacryloyloxy)ethyl phosphorylcholine]-block-(glycerol monomethacrylate) (PMPC30-PGMA30, where the numbers represent the average degrees of polymerization for each block) was evaluated for the synthesis of colloidally stable ultrafine magnetite sols. Sterically stabilized paramagnetic sols were prepared in aqueous solution by chemical coprecipitation of ferric and ferrous salts in the presence of this block copolymer. The PMPC30-PGMA30-stabilized magnetite sol had a mean transmission electron microscopy (TEM) diameter of 9.4 +/- 1.7 nm and a mean hydrodynamic diameter of 34 nm. This sol exhibited improved colloidal stability with respect to long-term storage and pH variation compared with magnetite sols prepared in the presence of alternative water-soluble homopolymers and diblock copolymers. Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry, electron spectroscopy imaging (ESI), and zeta potential studies indicate that the PMPC30-PGMA30 diblock copolymer was adsorbed onto the surface of the sol via the PGMA30 block, with the PMPC30 chains acting as the stabilizing block. Such sterically stabilized sols are expected to be improved contrast agents for magnetic resonance imaging (MRI) applications.  相似文献   

13.
Water-soluble graft copolymers with phospholipid polar group were synthesized by the macromonomer method and their properties in water were investigated by surface tension and fluorescence spectroscopic measurements. At first, 2-methacryloyloxyethyl phosphorylcholine (MPC) was polymerized in the presence of 3-mercapt propionic acid as a chain transfer agent and carboxyl group-terminated oligo (MPC) was obtained. The oligo (MPC) reacted with glycidyl methacrylate to convert the carboxyl group to a polymerizable methacryloyl group. The MPC macromonomer obtained was copolymerized with hydrophobic n-butyl methacrylate (BMA) and a graft copolymer was obtained. The graft copolymer, poly(MPC-graft-BMA), was water-soluble when the MPC unit mole fraction was above 0.40. The surface tension of the aqueous solution of poly(MPC-graft-BMA) did not depend on the polymer concentration below 0.1 wt %. This tendency was the same as that which appeared in aqueous poly(MPC) solution. The fluorescence intensity of hydrophobic probes observed in an aqueous solution of the poly (MPC-graft-BMA) was also the same level as that observed in the case of poly(MPC). These results clearly indicated that the poly(MPC-graft-BMA) took a domain structure like micelle in water, i.e., the hydrophobic poly(BMA) backbone was in the core part and the hydrophilic poly(MPC) chain formed the shell part of the micelle. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
DNA immobilization onto support surfaces is required in biotechnological applications such as microarrays and gene delivery. This important interfacial molecular process can be mediated from a preadsobred cationic polymer. There is, however, a lack of understanding over the control of the interfacial composition and structural distribution of the DNA immobilized. We have used a combined approach of spectroscopic ellipsometry (SE), dual polarization interferometry (DPI) and neutron reflection (NR) to determine the interfacial polymer adsorption and the subsequent DNA binding. Cationic diblock copolymers incorporating 30 phosphorylcholine (PC) groups and different diethylaminoethyl groups, referred to as MPC30-DEAn, were chosen because of their well-defined molecular architecture. While our studies revealed different effects of surface charge and hydrophobicity, the amount of copolymers adsorbed on both model surfaces showed a broad trend of increase with solution pH, indicating a strong effect arising from pH-dependent charge density on the copolymers. In contrast, the copolymer structure and solution concentration showed a weak effect under the conditions studied. The subsequent DNA binding at pH 7 showed that on both surfaces the amount of DNA immobilized followed an approximate 1:1 charge interaction for all different DNA samples studied, irrespective of single or double strand, or different DNA size, indicating the dominant effect of electrostatic interaction between the two species. Both DPI and NR revealed consistent thickness increase upon DNA binding. Furthermore, with increasing DNA size, the interfacial layer became much thicker, and charge interaction drove more extensive interfacial mixing between the two species. Our results show that the amount of DNA immobilized is controlled by the amount of cationic copolymer preadsorbed that is in turn controlled by the solution pH and surface chemistry but that is barely affected by the type and concentration of DNA or cationic copolymer.  相似文献   

15.
Block copolymers are a special class of polymers having the ability to self-assemble into nanoscale ordered structures which depend on molecular composition of the blocks. With the aim of studying the influence of copolymer composition, the kinetics of a 4,4′-diaminodiphenylmethane-cured diglycidyl ether of bisphenol-A (DGEBA) epoxy system modified with a PEO-PPO-PEO block copolymers has been investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), taking into account the relation between blocks in the copolymer as well as different copolymer contents. DSC results show that the rate of cure reaction decreases when the copolymer is added, which can be attributed to the interaction between the hidroxyl groups of the growing epoxy thermoset and the ether groups of the block copolymer observed by FTIR. The experimental results obtained have been related to the morphologies observed by atomic force microscopy (AFM).  相似文献   

16.
We report on a simple procedure to tune the hydrophilicity of hybrid gold nanoparticles. The nanoparticles have been prepared in the core of a poly(ethylene glycol)-block-poly(epsilon-caprolactone) (PEG-b-PCL) five-arm star block copolymer. A hydrophilic corona was then added to these hybrid gold nanoparticles by direct chemisorption of trithiocarbonate-containing poly(acrylic acid) chains. These polymers were synthesized by RAFT polymerization with a trithiocarbonate as the chain-transfer agent. The efficiency of the grafting was evidenced by TEM, AFM, and DLS and by the successful transfer of these nanoparticles from organic solvent to water.  相似文献   

17.
DNA nanotechnology utilizes DNA double strands as building units for self-assembly of DNA nanostructures.The specific base-pairing interaction between DNA molecules is the basis of these assemblies.After decades of development,this technology has been able to construct complex and programmable structures.With the increase in delicate nature and complexity of the synthesized nanostructures,a characterization technology that can observe these structures in three dimensions has become necessary,and developing such a technology is considerably challenging.DNA assemblies have been studied using different characterization methods including atomic force microscopy(AFM),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).However,the three-dimensional(3D)DNA assemblies always collapse locally due to the dehydration during the drying process.Cryogenic electron microscopy(cryo-EM)can overcome the challenge by maintaining three-dimensional morphologies of the cryogenic samples and reconstruct the 3D models from cryogenic samples accordingly by collecting thousands of two-dimensional(2D)projection images,which can restore their original morphologies in solution.Here,we have reviewed several typical cases of 3D DNA-assemblies and highlighted the applications of cryo-EM in characterization of these assemblies.By comparing with some other characterization methods,we have shown how cryo-EM promoted the development of structural characterization in the field of DNA nanotechnology.  相似文献   

18.
The morphology of a series of hydrogels based on the interpenetration of poly(2-hydroxyethyl acrylate) and poly(ethyl acrylate) has been studied through transmission electron microscopy, TEM, atomic force microscopy, AFM, and dynamic-mechanical spectroscopy, DMA. For the TEM analysis phosphotungstic acid, PTA, was used as alternative selective staining agent to those commonly used. The good agreement between TEM and AFM images allowed us to confirm that the PTA technique is a very powerful tool for TEM analysis of these hydrogel systems. All the results show that the IPNs presented phase-separation with two kinds of microdomains: those preferentially with a hydrophilic nature and those with preferentially a hydrophobic one, of sizes that range from 30 nm to 100 nm. Each one of these domains is composed by smaller nanodomains of alternating hydrophobic and hydrophilic component ranging between 6 and 10 nm sizes, those preferentially with a hydrophilic nature having a larger proportion of hydrophilic nanodomains. The AFM images of the IPN with the highest PHEA mass fraction, xPHEA = 0.75, suggest that the hydrophilic phase is co-continuous in the material. A disperse hydrophilic phase is found when the PHEA mass fraction is reduced up to xPHEA = 0.38. This phase-separation is explained in terms of some characteristic parameters of the networks such as the mesh size and the number of units between cross-links. The morphology found makes the systems very attractive for cell adhesion substrates and for matrices of scaffolds in soft tissue engineering.  相似文献   

19.
Heterophase polymerization in combination with ceric ion redox initiation offers some unique features with respect to the preparation of block copolymers and block copolymer particles. Various kinds of amphiphilic multi-block copolymers as well as electrosterically or sterically stabilized particles are easy accessible. A special feature of these particles is that they may consists of two different hydrophilic blocks and thus, leading to particles with a structured hydrophilic shell. The amphiphilic multiblock copolymers are used to form a new class of polymer dispersions by self-organization so-called polymeric colloidal complexes. In general, the particles of these complexes are structured and exhibit very often multiple morphologies. This principle of formation of polymer colloids is an easy way to prepare particles with an unusual morphology such as Janus-type particles.  相似文献   

20.
To improve the blood compatibility of cellulose acetate (CA) membranes for hemofiltration, a novel CA membrane blended with 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer was designed for a hemocompatible filtration system. The MPC copolymer (PMB30) was synthesized from MPC and n-butyl methacrylate. The polymer solution for making the membrane was prepared from a solvent mixture composed of N,N-dimethylformamide, acetone, and 2-propanol. The CA and CA/PMB30 blended membranes with an asymmetric and porous structure were prepared by a phase inversion process. The mechanical properties and solute permeability of the CA/PMB30 blended membrane could be controlled by preparation conditions such as the composition of the solvents and the solvent evaporation time. The CA/PMB30 blended membrane showed both good water and solute permeabilities in comparison with the CA membrane. Also, the molecular weight of the solute passed through the membrane was changed by the addition of PMB30, and good permselectivity could be obtained. Moreover, the CA/PMB30 blended membranes had excellent blood compatibility such as protein adsorption resistivity compared to the CA membrane due to location of the MPC units in the PMB30 at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号