首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen separation membrane having perovskite structure for the partial oxidation of methane to synthesis gas was prepared. La0.7Sr0.3Ga0.6Fe0.4O3−δ (LSGF) perovskite membrane coated with La0.6Sr0.4CoO3−δ (LSC) (M1), and the one side of M1 membrane coated with NiO (M2) was prepared to examine the partial oxidation of methane. The single oxygen permeations of the LSC + LSGF (M1) membrane and NiO coated membrane (M2) were measured. The oxygen permeation flux in M1 membrane was higher than that of M1 membrane at 850 °C.

The partial oxidation experiment of methane using the prepared membranes was examined at 850 °C. The value of CH4 conversion and CO selectivity of M2 membrane was higher than that of M1 membrane.

NiO/NiAl2O4 catalyst was used to improve the methane conversion, and the partial oxidation experiment of methane with M1 membrane was examined at 850 °C. The CH4 conversion was 88%, and CO selectivity was 100%.  相似文献   


2.
The effect of adding SiO2 to a precipitated iron-based Fischer–Tropsch synthesis (FTS) catalyst was investigated using N2 physical adsorption, H2 differential thermogravimetric analysis, temperature-programmed reduction/desorption (TPR/TPD) and Mössbauer spectroscopy. The FTS performances of the catalysts with or without SiO2 were compared in a fixed bed reactor. The characterization results indicated that SiO2 facilitates the high dispersion of Fe2O3 and significantly influences the Fe/Cu and Fe/K contacts, which play an important role in the surface basicity, reduction and carburization behaviors, as well as the FTS performances. The incorporation of SiO2 enhances the Fe/Cu contact, further enlarges the H2 adsorption and promotes the reduction of Fe2O3 → FeOx, while the transformation of FeOx → Fe is suppressed probably due to the strong Fe–SiO2 interaction. SiO2 indirectly weakens the surface basicity and severely suppresses the carburization and CO adsorption of the catalyst. In the FTS reaction, it was found that SiO2 decreases the FTS initial activity but improves the catalyst stability. Due to the lower surface basicity than the catalyst without SiO2, the catalyst incorporated with SiO2 has higher selectivity to light hydrocarbons and methane and decreased selectivity to the olefins and heavy hydrocarbons.  相似文献   

3.
分别采用一步合成法和常规共沉淀法制备了Fe/SiO2催化剂,通过N2物理吸附、X射线衍射、透射电镜、傅里叶变换红外光谱和程序升温还原等方法对催化剂进行了表征,并在固定床反应器中对其费托合成制低碳烯烃的催化性能进行了评价。结果表明,与共沉淀铁基催化剂不同,采用一步合成法制备的纳米复合物主要由Fe3O4相构成,形貌呈规则球形,平均粒径为30 nm,尺寸分布窄,更容易还原。一步合成法制得的Fe/SiO2催化剂对费托合成反应具有较高的活性和低碳烯烃选择性、较低的甲烷选择性和良好的稳定性。  相似文献   

4.
Perovskite-type oxides of the series La1−xAxMn1−yByO3 (A = Sr; B = Fe or Co) were prepared by solution combustion synthesis and characterized by X-ray diffraction, specific surface analysis, transmission electron microscopy and field emission scanning electron microscopy techniques. Their activity towards the combustion of methane was evaluated in a temperature programmed combustion microreactor. The LaMn0.9Fe0.1O3 catalyst was found to provide the best performance. The half-conversion temperature of methane over the LaMn0.9Fe0.1O3 catalyst was 398 °C with a W/F = 0.12 g s/cm3 and a methane feed concentration of 0.4 vol% under oxygen excess. Via temperature programmed oxygen desorption (TPD) analysis as well as catalytic combustion runs, the prevalent activity of the LaMn0.9Fe0.1O3 catalyst could be explained by its higher and increased capability to desorb suprafacial, weakly chemisorbed oxygen species. Further catalyst development allowed to maximise the catalytic activity of this compound by promoting it with CeO2 (1:1 molar ratio) and with 1 wt% Pd. This promoted catalyst was lined on cordierite monoliths in a γ-Al2O3-supported form (catalyst weight percentage: 15 wt%) and then tested in a lab-scale test rig under realistic conditions for compressed natural gas-vehicles' exhaust gas treatment. Half methane conversion was achieved at 340 °C (gas high space velocity = 10 000 h−1), nearly the same but with a fourfold lower amount of the expensive noble metal than that used in commercial 4wt%Pd–γ-Al2O3 catalysts.  相似文献   

5.
The Fischer–Tropsch synthesis (FTS) performances of iron-based catalysts promoted with/without potassium compounds containing different acidic structural promoters (Al2O3, SiO2, and ZSM-5) were studied in this research. Characterization technologies of temperature-programmed reduction with CO (CO-TPR), powder X-ray diffraction (XRD) and Mössbauer effect spectroscopy (MES) were used to study the effect of K–structural promoter interactions on the carburization behaviors of catalysts. It showed that the addition states of potassium (K–Al2O3, K–SiO2, K–ZSM-5 and K-free) have a significant influence on the formation of iron carbides, which shows a following sequence in promotion of carburization: K–Al2O3 > K–SiO2 > K–ZSM-5 > K-free. The FTS reaction test was performed in a fixed bed reactor. It is found that Fe/K–Al2O3 catalyst leads to the highest CO conversion, Fe/K–ZSM-5 catalyst shows the highest H2 conversion, and Fe/K-free catalyst shows the lowest CO and H2 conversion. As for the hydrocarbon selectivity, Fe/K–SiO2 catalyst yields the lowest methane and the highest C5+ products, Fe/K–ZSM-5 catalyst yields higher methane and the highest liquid hydrocarbon product, whereas Fe/K-free catalyst yields the highest methane and the lowest C5+ products. These results can be explained from the interaction between potassium and structure promoters, and the spillover of reactants or intermediates from Fe sites to the surfaces of structural promoters.  相似文献   

6.
A series of γ-Al2O3 samples modified with various contents of sulfate (0–15 wt.%) and calcined at different temperatures (350–750 °C) were prepared by an impregnation method and physically admixed with CuO–ZnO–Al2O3 methanol synthesis catalyst to form hybrid catalysts. The direct synthesis of dimethyl ether (DME) from syngas was carried out over the prepared hybrid catalysts under pressurized fixed-bed continuous flow conditions. The results revealed that the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration increased significantly when the content of sulfate increased to 10 wt.%, resulting in the increase in both DME selectivity and CO conversion. However, when the content of sulfate of SO42−/γ-Al2O3 was further increased to 15 wt.%, the activity for methanol dehydration was increased, and the selectivity for DME decreased slightly as reflected in the increased formation of byproducts like hydrocarbons and CO2. On the other hand, when the calcination temperature of SO42−/γ-Al2O3 increased from 350 °C to 550 °C, both the CO conversion and the DME selectivity increased gradually, accompanied with the decreased formation of CO2. Nevertheless, a further increase in calcination temperature to 750 °C remarkably decreased the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration, resulting in the significant decline in both DME selectivity and CO conversion. The hybrid catalyst containing the SO42−/γ-Al2O3 with 10 wt.% sulfate and calcined at 550 °C exhibited the highest selectivity and yield for the synthesis of DME.  相似文献   

7.
The effect of replacement of R4Sn by germanium and silicon derivatives as the promoter for the catalyst system Re2O7/SiO2-Al2O3 in the metathesis of hex-1-ene, and the system Re2O7/B2O3/SiO2-Al2O3 in the metathesis of methyl oleate, was studied. The new promoters react slowly with the rhenium oxide. An activation time of about 15 min at temperatures varying from 50 to 75 °C is required for obtaining a good catalytic activity. These promoters can replace the toxic tin compounds, although they give rise to lower turnover numbers in the metathesis of methyl oleate.  相似文献   

8.
We report an efficient catalyst composed of ternary components prepared by inlaying Pd/Co3O4 nanoparticles in alkaline Al2O3 nanosheets for catalytic oxidation of methane. Pd/Co3O4 inlaid in alkaline Al2O3 exhibited a higher ability to break the C-H bond of methane than Pd/Co3O4 supported on SiO2, ZrO2, CeO2, and acidic or neutral Al2O3. Our results show more oxygen vacancies and higher amounts of surface adsorbed oxygen on the surface of Pd/Co3O4/alkaline Al2O3 than on other catalysts, which is responsible for methane activation and conversion. Further, the Pd/Co3O4/alkaline Al2O3 catalyst can almost restore to its initial value in the absence of water when 5% (volume fraction) vapor water was cut off, although a decrease in activity occurred when water vapor was introduced to the reaction system. Even under a condition similar to the exhaust of a lean-burn natural gas engine, the catalytic performance of the Pd/Co3O4/alkaline Al2O3 catalyst is excellent, that is, methane could be completely converted when the sample temperature in the reaction atmosphere was ramped to 400℃.  相似文献   

9.
Employing the electrochemical cells with the solid oxide electrolyte
Kanthal + Re, Te(l), TeO2(s)O−2 air, Pt
Pt + Re, Sb2O3(s), Sb2O4(s)O−2 air, Pt
Pt + Re, Sb2O3(s), Sb2O4(s), Te(l)O−2 air, Pt
the equilibrium oxygen potential in the pseudobinary Te-TeO2, Sb2O3-Sb2O4 and in the Sb2O3-Sb2O4-Te pseudoternary systems was determined in the temperature range 700-1173 K. In addition, the pseudobinary sections Sb2O3-Te, Sb2O3-Sb2O4 (1:1)-Te and Sb2O4-Te were examined by DTA in the temperature range 500-1300 K. Using these results the evolution of the pseudoternary system with temperature can be suggested. It was found that, at 718 K, a ternary eutectic with a composition close to pure Te appears in the system. At a higher temperature, 920 K, another liquid phase is formed, which is characteristic of the ternary four-phase equilibrium L2 + Sb2O4(s) + Sb2O3(s) = L1.  相似文献   

10.
利用钙钛矿型复合氧化物(PTO)可以将多种金属离子限域并均匀混合于钙钛矿晶格中的特点,提出了一种构筑氧化物修饰的纳米双金属催化剂团簇的新构想。以担载于大比表面积SiO_2上的钙钛矿型复合氧化物La_(1-y)Ce_yCo_(0.87)Pt_(0.13)O_3/SiO_2作为前驱体,将La、Ce、Co和Pt多种金属离子均匀混合并限域于PTO晶粒中,还原后得到Pt-Co/La-Ce-O/SiO_2催化剂;通过氮气吸附-脱附、XRD、H2-TPR和TEM等手段对Pt-Co/La-Ce-O/SiO_2催化剂进行了表征,考察了其对CO氧化的催化性能,研究了构效关系。结果发现,La-Ce-O-Pt-Co构成了纳米团簇,担载于SiO_2表面,形成了Pt-Co纳米双金属颗粒; Co修饰Pt提高了其催化活性,而添加Ce进一步改善了其催化性能。当Ce含量(y)为0.2时,催化剂La_(0.8)Ce_(0.2)Co_(0.87)Pt_(0.13)O_3/SiO_2的活性最佳,在120℃下即可实现CO完全转化,且在含体积分数15%H_2O及12.5%CO_2的气氛中仍具有较好的催化性能。稳定性测试表明,所制得的Pt-Co/La-Ce-O/SiO_2催化剂具有良好的稳定性和抗烧结性能。  相似文献   

11.
本文用脉冲色谱法测定了Pd-V氧化物体系催化剂对乙烯、氧和二氧化碳的吸附作用。指出在接近反应温度下(80-100°C),Pd-V氧化物体系的催化剂对乙烯有可逆与不可逆两种吸附作用,而单独的PdO和V2O5以及载体SiO2则只有可逆吸附作用。测定了不同温度下可逆吸附等温线,计算了吸附热,考查了不可逆吸附与催化剂中Pd含量之间的关系,指出在Pd-V氧化物催化剂上,乙烯的不可逆吸附量与催化氧化活性一样,是与Pd含量有关的。测定了预吸附氧有利于乙烯的不可逆吸附,而CO2则不能牢固的吸附在催化剂表面上。  相似文献   

12.
The catalytic activity of MV2O6 and M2V2O7 type oxides prepared by the molten method (MM) for anaerobic oxidation of isobutane was studied in order to construct a system for the selective oxidation of isobutene using a thin layer reactor. Isobutene, CO and CO2 were formed by every catalyst tested. The activities for isobutene formation were CuV2O6 > ZnV2O6, NiV2O6, CoV2O6 > MgV2O6 > MnV2O6  CaV2O6. Isobutene was a major product over M2V2O7 (MM). Co2V2O7 showed the highest activity and high isobutene selectivity exceeded 90%, demonstrating that Co2V2O7 is a suitable oxide for a thin layer reactor for anaerobic oxidation of isobutane. Partial substitution of Mg by Cu in Mg2V2O7 (MM) improved the activity. It is shown by the oxidation at low O2 concentration as 2–3% that two types of oxidations occurred simultaneously: isobutene formation by the lattice oxygen ions diffused from the bulk, and CO and CO2 formation by the oxygen species derived from molecular oxygen in the gas phase.  相似文献   

13.
张兰  尉继英  赵璇  李福志  江锋 《物理化学学报》2014,30(10):1923-1931
90Sr是核电站放射性废液中需要重点去除的核素之一,水合锑氧化物Sb2O5·mH2O可以在酸性条件下选择性吸附脱除90Sr.本文在以醇为溶剂的无水体系中,以化学性能较稳定且毒性低的SbCl3为原料,以紫外线照射辅助双氧水氧化及控制水解两步法制备出自掺杂型锑氧化物Sb(Ⅲ)/Sb2O5.文中采用X射线光电子能谱(XPS)、X射线衍射(XRD)和傅里叶变换红外(FTIR)光谱对材料结构进行结构表征,并采用批量实验方法研究不同Sb(Ⅲ)/Sb(total)比例与Sr(Ⅱ)吸附性能的相关性,以及溶液pH值对Sr(Ⅱ)吸附性能的影响.实验结果表明:Sb(Ⅲ)可在较大的比例范围内共存于立方烧绿石型Sb2O5晶格内,形成良好的固溶体Sb(Ⅲ)/Sb2O5;制备过程中通过控制醇溶剂的类型、氧化剂的添加方式以及两步反应温度,可以获得具有不同氧化率,即不同Sb(Ⅲ)/Sb(total)比例的Sb(Ⅲ)/Sb2O5材料;其中Sb(Ⅲ)/Sb(total)比例为49.8%的锑氧化物材料吸附性能最好,在纯水体系下对Sr(Ⅱ)的分配系数为6.6×107mL·g-1,在pH=3-13范围内对Sr(Ⅱ)具有良好的吸附性能,并且在本文实验条件下,Sr(Ⅱ)在锑氧化物材料上的吸附更好地符合Langmuir吸附模型.  相似文献   

14.
以乙酰丙酮铑(Rh(acac)_3)和乙酰丙酮钐(Sm(acac)_3)为前驱体,用浸渍法制备了Rh/SiO_2和Rh-Sm_2O_3/SiO_2催化剂。采用原位红外光谱、热重分析、低温N_2吸附、X射线粉末衍射、高分辨透射电子显微镜、H_2-程序升温还原和X射线光电子能谱等实验技术对催化剂的制备过程,比表面积和物相以及Rh与Sm_2O_3间的相互作用进行了表征,并以甲烷部分氧化制合成气为目标反应对催化剂的稳定性进行了考察。研究表明:以Rh(acac)_3和Sm(acac)_3为前驱体采用简单的浸渍法即可制备出Rh平均粒径为2.3 nm且具有良好抗烧结性能的Rh-Sm_2O_3/SiO_2催化剂。在浸渍过程中乙酰丙酮化合物通过与SiO_2表面羟基形成氢键而负载于载体表面。Sm(acac)_3在SiO_2表面的单层负载量(质量分数)约为31%,对应于Sm_2O_3的质量分数约为15%,只要Sm(acac)_3的质量分数低于这一阈值,均可保证分解后生成的Sm_2O_3以高分散形式负载于SiO_2上,且不会因高温(800°C)焙烧而团聚。高分散于SiO_2表面的Sm_2O_3与Rh之间存在强的相互作用,可显著提高Rh的分散度,防止其在高温反应条件下烧结,进而使低Rh负载量的催化剂表现出良好的甲烷部分氧化制合成气反应活性和稳定性。  相似文献   

15.
不同载体Ni基催化剂生物质热解气甲烷化反应性能   总被引:2,自引:0,他引:2  
采用浸渍法制备了Ni金属负载在不同载体(SiO2、ZrO2、CeO2、Al2O3和Al2O3-CeO2)表面形成的催化剂,研究了水蒸气和载体对生物质热解气甲烷化反应性能的影响。结果表明,随着水蒸气量的增加CO转化率逐渐增大,而甲烷选择性呈现先增加后降低的变化趋势,当nw ater/ngas比值为0.26时达到最大。载体Al2O3相比SiO2、ZrO2和CeO2具有更大的比表面积和Ni金属分散度,促进了生物质热解气甲烷化反应活性和选择性。相比于Ni-Al2O3催化剂,Al2O3-CeO2复合载体具有更多的镍金属负载量活性金属分散度,以及最好的低温甲烷化反应性能。在300℃的低温条件下,Ni-Al2O3-CeO2催化剂的CO转化率达到97%,CH4增长率达到110%。  相似文献   

16.
用自组装法制备了一种具有核–壳结构的Pd-Co3O4@SiO2催化剂,对其低浓度甲烷催化燃烧性能进行了研究。TEM、XRD、H2-TPR表征及催化活性测试结果表明,SiO2壳内的PdO与CoOx之间的强相互作用,使得Pd-Co3O4@SiO2对低浓度甲烷燃烧具有优异的催化活性。同时,与负载型Pd/Co3O4-SiO2及Pd/Co3O4@SiO2催化剂相比,核-壳型Pd-Co3O4@SiO2催化剂经800 ℃煅烧后仍能保持较好的核-壳结构,有效地避免了Pd和Co活性物种的高温烧结,因而具有更高的热稳定性。  相似文献   

17.
The preparation of bulk MoVTe(Sb)Nb mixed oxide catalysts using a traditional slurry method, results in highly active catalysts for oxidative dehydrogenation of ethane to ethene. Several major phases including orthorhombic M1, hexagonal M2 or MoxM1−xO2.8 (M = V or Nb) have been detected in the catalysts from characterization results such as X-ray diffraction (XRD), SEM and EDX analyses. Ethane conversion and yield to ethene increase with increasing content of the M1 phase in the catalysts. The maximum yield of ethene (ca. 87% selectivity and ca. 90% conversion, STYC2H4 of 176 g  h−1) has been obtained with a MoV0.31Te0.2Nb0.14 mixed oxide catalyst, calcined at 873 K under nitrogen, containing almost pure orthorhombic M1 phase and small amounts of unidentified impurity phases, operating at a relatively low reaction temperature of 673 K. The orthorhombic M1 phase has been shown to be the most active in ethane activation and the most selective for ethene formation. The hexagonal M2 phase is relatively inactive in ethane activation and less selective for ethene formation. The Te-free phases such as Sb4Mo10O31 and MoxM1−xO2.8 (M = V or Nb) show the lowest selectivity to ethene.  相似文献   

18.
结合锑较优的抗水抗硫能力与钨提高钒基催化剂活性的能力,采用浸渍法制备了以锑-钨为双助剂的V-W-Sb/Ti催化剂,并探究了不同制备条件对改性催化剂脱硝性能的影响。催化剂脱硝活性测试及抗水抗硫实验在固定床反应器中进行,并利用氮气物理吸附-脱附测试、X射线衍射、NH_3-TPD测试和H_2-TPR测试对催化剂进行表征。结果表明,在洁净气氛下,以3V_2O_5-5WO_3-2Sb_2O_3/90TiO_2为例,采用醋酸锑为前驱物制备的催化剂脱硝效率高于以氯化锑为前驱物制备的催化剂; 400℃下焙烧制备的催化剂较500℃焙烧制备的催化剂有更优的脱硝活性;而浸渍步数的差异对催化剂的脱硝活性影响有限。在180℃的测试条件下,通入10%H_2O与0.01%SO_2后,以醋酸锑为前驱物、采用两步浸渍并在400℃下焙烧制备的催化剂的脱硝活性仅比以氯化锑为前驱物、采用一步浸渍并在400℃下焙烧制备的催化剂脱硝活性高2%,而后者制备过程相对简单方便,因此,其更具有工业应用价值。  相似文献   

19.
制备了系列甲烷化学链燃烧用CeO2/Co3O4复合氧载体,采用XRD、H2-TPR、甲烷程序升温和恒温反应对氧载体进行了表征与评价。研究了不同CeO2的负载量对复合氧载体的结构、氧化还原性、产物选择性的影响。结果表明,氧化铈的添加不仅降低了氧载体的初始反应温度,还延长了有效反应时间,但铈添加量过高会降低产物CO2选择性,使甲烷向部分氧化进行。CeO2(30%)/Co3O4氧载体在650 ℃经20次循环后甲烷转化率和CO2选择性均未明显降低,表现出较高的活性和化学链循环稳定性。  相似文献   

20.
采用热分解方法制备了4种电极钛基金属氧化物:Ti/SnO2+Sb2O3、Ti/SnO2+Sb2O3/SnO2+IrO2、Ti/SnO2+Sb2O3/SnO2+RuO2和Ti/SnO2+Sb2O3/SnO2+CeO2. X-射线衍射分析表明Ti/SnO2+Sb2O3/SnO2+CeO2电极的CeO2晶体结构完好,连续工作较长时间电极表面没有明显析氧. 使用该电极电解氧化氨氮模拟废水(降解2 h),氨氮模拟废水从高浓度(500 mg·L-1)降解为较低浓度(180 mg·L-1),降解效率可达64%,电解活性最佳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号