首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hit and run methods are probabilistic algorithms that can be used to detect necessary (nonredundant) constraints in systems of linear constraints. These methods construct random sequences of lines that pass through the feasible region. These lines intersect the boundary of the region at twohit-points, each identifying a necessary constraint. In order to study the statistical performance of such methods it is assumed that the probabilities of hitting particular constraints are the same for every iteration. An indication of the best case performance of these methods can be determined by minimizing, with respect to the hit probabilities, the expected value of the number of iterations required to detect all necessary constraints. We give a set of isolated strong local minimizers and prove that for two, three and four necessary constraints the set of local minimizers is the complete set of global minimizers. We conjecture that this is also the case for any number of necessary constraints. The results in this paper also apply to sampling problems (e.g., balls from an urn) and to the coupon collector's problem.  相似文献   

2.
This paper considers optimal control problems involving the minimization of a functional subject to differential constraints, terminal constraints, and a state inequality constraint. The state inequality constraint is of a special type, namely, it is linear in some or all of the components of the state vector.A transformation technique is introduced, by means of which the inequality-constrained problem is converted into an equality-constrained problem involving differential constraints, terminal constraints, and a control equality constraint. The transformation technique takes advantage of the partial linearity of the state inequality constraint so as to yield a transformed problem characterized by a new state vector of minimal size. This concept is important computationally, in that the computer time per iteration increases with the square of the dimension of the state vector.In order to illustrate the advantages of the new transformation technique, several numerical examples are solved by means of the sequential gradient-restoration algorithm for optimal control problems involving nondifferential constraints. The examples show the substantial savings in computer time for convergence, which are associated with the new transformation technique.This research was supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-76-3075, and by the National Science Foundation, Grant No. MCS-76-21657.  相似文献   

3.
It is shown that, when the set of necessary conditions for an optimal control problem with state-variable inequality constraints given by Bryson, Denham, and Dreyfus is appropriately augmented, it is equivalent to the (different) set of conditions given by Jacobson, Lele, and Speyer. Relationships among the various multipliers are given.This work was done at NASA Ames Research Center, Moffett Field, California, under a National Research Council Associateship.  相似文献   

4.
This paper presents a degenerate extreme point strategy for active set algorithms which classify linear constraints as either redundant or necessary. The strategy makes use of an efficient method for classifying constraints active at degenerate extreme points. Numerical results indicate that significant savings in the computational effort required to classify the constraints can be achieved.This research was supported by the Natural Sciences and Engineering Research Council of Canada under Grants A8807 and A4625 and by an Undergraduate Summer Research Award.  相似文献   

5.
Let B i be deterministic real symmetric m × m matrices, and ξ i be independent random scalars with zero mean and “of order of one” (e.g., ). We are interested to know under what conditions “typical norm” of the random matrix is of order of 1. An evident necessary condition is , which, essentially, translates to ; a natural conjecture is that the latter condition is sufficient as well. In the paper, we prove a relaxed version of this conjecture, specifically, that under the above condition the typical norm of S N is : for all Ω > 0 We outline some applications of this result, primarily in investigating the quality of semidefinite relaxations of a general quadratic optimization problem with orthogonality constraints , where F is quadratic in X = (X 1,... ,X k ). We show that when F is convex in every one of X j , a natural semidefinite relaxation of the problem is tight within a factor slowly growing with the size m of the matrices . Research was partly supported by the Binational Science Foundation grant #2002038.  相似文献   

6.
This paper briefly reviews the literature on necessary optimality conditions for optimal control problems with state-variable inequality constraints. Then, it attempts to unify the treatment of linear optimal control problems with state-variable inequality constraints in the framework of continuous linear programming. The duality theory in this framework makes it possible to relate the adjoint variables arising in different formulations of a problem; these relationships are illustrated by the use of a simple example. This framework also allows more general problems and admits a simplex-like algorithm to solve these problems.This research was partially supported by Grant No. A4619 from the National Research Council of Canada to the first author. The first author also acknowledges the support provided by the Brookhaven National Laboratory, where he conducted his research.  相似文献   

7.
Interior methods for linear programming were designed mainly for problems formulated with equality constraints and non-negative variables. The formulation with inequality constraints has shown to be very convenient for practical implementations, and the translation of methods designed for one formulation into the other is not trivial. This paper relates the geometric features of both representations, shows how to transport data and procedures between them and shows how cones and conical projections can be associated with inequality constraints.  相似文献   

8.
New iterative methods for linear inequalities   总被引:1,自引:0,他引:1  
New iterative methods for solving systems of linear inequalities are presented. Each step in these methods consists of finding the orthogonal projection of the current point onto a hyperplane corresponding to a surrogate constraint which is constructed through a positive combination of a group of violated constraints. Both sequential and parallel implementations are discussed.The authors are grateful to a referee for pointing out the result in Lemma 5.1 and its importance in the proof of Theorem 5.1. This work was supported partially by NSF Grant No. ECS-85-21183.  相似文献   

9.
讨论了带线性不等式约束三次规划问题的最优性条件和最优化算法. 首先, 讨论了带有线性不等式约束三次规划问题的 全局最优性必要条件. 然后, 利用全局最优性必要条件, 设计了解线性约束三次规划问题的一个新的局部最优化算法(强局部最优化算法). 再利用辅助函数和所给出的新的局部最优化算法, 设计了带有线性不等式约束三 规划问题的全局最优化算法. 最后, 数值算例说明给出的最优化算法是可行的、有效的.  相似文献   

10.
We are concerned with a nonlinear programming problem with equality and inequality constraints. We shall give second-order necessary conditions of the Kuhn-Tucker type and prove that the conditions hold under new constraint qualifications. The constraint qualifications are weaker than those given by Ben-Tal (Ref. 1).The author would like to thank Professor N. Furukawa and the referees for their many valuable comments and helpful suggestions.  相似文献   

11.
We present a formula to calculate the probability density function of the solution of the random linear transport equation in terms of the density functions of the velocity and the initial condition. We also present an expression for the joint probability density function of the solution in two different points. Our results have shown good agreement with Monte Carlo simulations.  相似文献   

12.
In this paper, we apply the tolerance approach proposed by Wendell for sensitivity analysis in linear programs to study sensitivity analysis in linear complementarity problems. In the tolerance approach, we find the range or the maximum tolerance within which the coefficients of the right-hand side of the problem can vary simultaneously and independently such that the solution of the original and the perturbed problems have the same index set of nonzero elements.The work of the first author was completed while he was at Virginia Commonwealth University, Richmond, Virginia.  相似文献   

13.
This paper deals with the approximation of a given large scattered univariate or bivariate data set that possesses certain shape properties, such as convexity, monotonicity, and/or range restrictions. The data are approximated for instance by tensor-product B-splines preserving the shape characteristics present in the data.Shape preservation of the spline approximant is obtained by additional linear constraints. Constraints are constructed which are local linear sufficient conditions in the unknowns for convexity or monotonicity. In addition, it is attractive if the objective function of the resulting minimisation problem is also linear, as the problem can then be written as a linear programming problem. A special linear approach based on constrained least squares is presented, which in the case of large data reduces the complexity of the problem sets in contrast with that obtained for the usual 2-norm as well as the -norm.An algorithm based on iterative knot insertion which generates a sequence of shape preserving approximants is given. It is investigated which linear objective functions are suited to obtain an efficient knot insertion method.  相似文献   

14.
We develop a convergence theory for convex and linearly constrained trust region methods which only requires that the step between iterates produce a sufficient reduction in the trust region subproblem. Global convergence is established for general convex constraints while the local analysis is for linearly constrained problems. The main local result establishes that if the sequence converges to a nondegenerate stationary point then the active constraints at the solution are identified in a finite number of iterations. As a consequence of the identification properties, we develop rate of convergence results by assuming that the step is a truncated Newton method. Our development is mainly geometrical; this approach allows the development of a convergence theory without any linear independence assumptions.Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38.Work supported in part by the National Science Foundation grant DMS-8803206 and by the Air Force Office of Scientific Research grant AFSOR-860080.  相似文献   

15.
A computational algorithm for a class of time-lag optimal control problems involving control and terminal inequality constraints is presented. The convergence properties of the algorithm is also investigated. To test the algorithm, an example is solved.This work was partially supported by the Australian Research Grant Committee.  相似文献   

16.
Based on a new efficient identification technique of active constraints introduced in this paper, a new sequential systems of linear equations (SSLE) algorithm generating feasible iterates is proposed for solving nonlinear optimization problems with inequality constraints. In this paper, we introduce a new technique for constructing the system of linear equations, which recurs to a perturbation for the gradients of the constraint functions. At each iteration of the new algorithm, a feasible descent direction is obtained by solving only one system of linear equations without doing convex combination. To ensure the global convergence and avoid the Maratos effect, the algorithm needs to solve two additional reduced systems of linear equations with the same coefficient matrix after finite iterations. The proposed algorithm is proved to be globally and superlinearly convergent under some mild conditions. What distinguishes this algorithm from the previous feasible SSLE algorithms is that an improving direction is obtained easily and the computation cost of generating a new iterate is reduced. Finally, a preliminary implementation has been tested.  相似文献   

17.
In this paper, 2 extragradient methods for solving differential variational inequality (DVI) problems are presented, and the convergence conditions are derived. It is shown that the presented extragradient methods have weaker convergence conditions in comparison with the basic fixed‐point algorithm for solving DVIs. Then the linear complementarity systems, as an important and practical special case of DVIs, are considered, and the convergence conditions of the presented extragradient methods are adapted for them. In addition, an upper bound for the Lipschitz constant of linear complementarity systems is introduced. This upper bound can be used for adjusting the parameters of the extragradient methods, to accelerate the convergence speed. Finally, 4 illustrative examples are considered to support the theoretical results.  相似文献   

18.
Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the g-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.  相似文献   

19.
The part families with precedence constraints problem (PFP) arises in industry, when flexible manufacturing systems are designed within a group technology approach. The aim of this problem is to arrange parts into families by imposing capacity constraints, concerning both the number of parts and processing times, besides precedence constraints in the building of families.  相似文献   

20.
After the advantages of methods of feasible directions in an engineering design environment are pointed out, several modifications to the classical scheme are proposed, aimed at improving computational efficiency while preserving convergence properties.First, an abstract algorithm model is set up and a set of sufficient conditions to ensure convergence is given. Several modifications are proposed, inspired by difficulties arising in an engineering design environment, and it is shown that the resulting algorithms satisfy the sufficient conditions just mentioned. An integrated-circuit bipolar operational amplifier is optimized in order to show the improvement in computation efficiency that the proposed enhancements can provide.This research was supported by the National Science Foundation, Grant No. ECS-82-04452 and by a grant from the Semiconductor Division of the Harris Corporation. The authors wish to thank K.H. Fan, for making numerous useful remarks and for carrying out the numerical experiments, and an anonymous reviewer for pointing out important flaws in an early version of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号