首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   

2.
Reported are the synthesis and the structural characterization of four new polar intermetallic phases, which exist only with mixed alkaline-earth and rare-earth metal cations in narrow homogeneity ranges. (Sr1-xCax)5In3Ge6 and (Eu1-xYbx)5In3Ge6 (x≈0.7) crystallize in the orthorhombic space group Pnma with two formula units per unit cell (own structure type, Pearson symbol oP56). The lattice parameters are as follows: a=13.109(3)-13.266(3) Å, b=4.4089(9)-4.4703(12) Å, and c=23.316(5)-23.557(6) Å. (Sr1-xCax)3In2Ge4 and (Sr1-xYbx)3In2Ge4 (x≈0.4-0.5) adopt another novel monoclinic structure-type (space group C2/m, Z=4, Pearson symbol mS36) with lattice parameters in the range a=19.978(2)-20.202(2) Å, b=4.5287(5)-4.5664(5) Å, c=10.3295(12)-10.3447(10) Å, and β=98.214(2)-98.470(2)°, depending on the metal cations and their ratio. The polyanionic sub-structures in both cases are based on chains of InGe4 corner-shared tetrahedra. The A5In3Ge6 structure (A=Sr/Ca or Sr/Yb) also features Ge4 tetramers, and isolated In atoms in nearly square-planar environment, while the A3In2Ge4 structure (A=Sr/Ca or Eu/Yb) contains zig-zag chains of In and Ge strings with intricate topology of cis- and trans-bonds. The experimental results have been complemented by tight-binding linear muffin-tin orbital (LMTO) band structure calculations.  相似文献   

3.
A series of catalysts is developed for synthesis of vitamins K from easily available l-naphthol. The corresponding catalytic reactions compose the background of VIKASIB technology, which is friendly to the enviroment.  相似文献   

4.
We have used X-ray absorption spectroscopy (XAS) to investigate the local structure of Cu and Ge in the Cs8Na16Cu5Ge131 type II clathrate. We show that the local structure parameters for Ge (coordination number and distances) are consistent with those derived on the basis of XRD investigation of Cs8Na16Ge136. The EXAFS data suggest that Cu either randomly substitutes for Ge on the clathrate framework or preferentially on the 96g site but not preferentially on the 32e or 8a sites (Wyckoff notation). Furthermore, we find that the Cu-Ge distance is smaller than the Ge-Ge distance by 0.13 Å, indicating a local distortion around the Cu atoms. The estimated degrees of disorder for Cu-Ge and Ge-Ge interactions indicate the Cu-Ge clathrate framework to be relatively stiff, while those for Na-Ge and Cs-Ge interactions corroborate previous observations of strong thermal disorder of the alkali guests in these materials. Our XAS results offer insight into the site substitution of Cu in this material, information unattainable from X-ray diffraction due to the lack of scattering contrast between Cu and Ge.  相似文献   

5.
The potassium salts of two new hepta coordinated oxyfluoro anions of tungsten (VI) are reported in this paper. The monomer, K3WO2F5 was obtained from the aqueous solution while the dimer, K6W2O5F8 was isolated from alcohol. The absorption peak of K6W2O5F8 at 830 cm-1 has been attributed to W-O-W link. The W-O-W angle is found to be 155° and the force constant is 4.44 mdyn/A°. The d values obtained from x-ray powder diffraction studies are given.  相似文献   

6.
The new ternary phases Zr4−xTa1+xGe4 (0.1<x<0.4) and Zr2+xTa3−xGe4 (0.1<x<1.1) were prepared from the elements by arc melting and subsequent induction heating at 1400–1450°C. Single-crystal X-ray diffraction was used to determine their structures and to refine mixed site occupancies. Zr4−xTa1+xGe4 was found to crystallize in the monoclinic space group P21/c (structure type: U2Mo3Si4) and the compound Zr2−xTa3−xGe4 shows orthorhombic symmetry (space group Pnma, structure type: Sm5Ge4). The close structural relationship between the two structures is discussed. Both phases exhibit pronounced differential fractional site occupancy of Ta and Zr on the metal sites and considerable composition ranges. Extended Hückel calculations were performed for various site occupancy models and Mulliken overlap populations for the different lattice sites of each structure were calculated for these models. The correlation of the cumulated Mulliken overlap populations and the atomic orbital populations with the actual site occupancies is discussed.  相似文献   

7.
A new two-dimensional zinc phosphate Zn6(PO4)5(HPO4)·C8N5H28·5H2O has been synthesized hydrothermally using tetraethylenepentamine (TEPA) as structure-directing agent and its structure was determined by means of single-crystal X-ray diffraction. The title compound crystallizes in the orthorhombic system, space group Pca21 (No.29) with lattice parameters a=18.6286(12) Å, b=8.0804(5) Å, c=22.5019(15) Å, V= 3387.1(4) Å3, Z=4, R1=0.0389 and wR2=0.0862 [4042 observed reflections with I>2σ(I)]. The structure involves a network of ZnO4, PO4, and PO3(OH) tetrahedra forming macroanionic inorganic layers with eight-membered apertures. The charge compensation is achieved by the quintuply protonated TEPA molecule in interlamellar space, which interact with the inorganic layers via hydrogen bonding.  相似文献   

8.
Phase equilibrium in the pseudo-quaternary system K2O–MoO3–P2O5–Bi2O3 was studied as three-component solvent K2MoO4–KPO3–MoO3 containing 15 mol% Bi2O3 during slow cooling and spontaneous crystallization. The results of the investigation were shown on a composition diagram, which indicates the crystallization fields of K2Bi(PO4)(MoO4), K5Bi(MoO4)4, BiPO4 and K3Bi5(PO4)6. New phosphate K3Bi5(PO4)6 was characterized by single-crystal X-ray diffraction (space group C2/c, a=17.680(4), b=6.9370(14), c=18.700(4) Å, β=113.79(3)°) and FTIR spectroscopy. The possibility of lone electron pair stereoactivity of bismuth was suggested using the calculations of characteristics of the Voronoi–Dirichlet polyhedra for K3Bi5(PO4)6 and K2Bi(PO4)(MoO4).  相似文献   

9.
The title compound was synthesized by reacting the elements in an arc-melting apparatus under purified argon and subsequent annealing at 870 K. Ca3Ni8In4 was investigated using X-ray diffraction on both powders and single crystals: P63mc, a=898.9(1) pm, c=752.2(2) pm, wR2=0.0591, 327 F2 values, and 35 parameters. This structure is an ordered, noncentrosymmetric variant of the BaLi4 type. The nickel and indium atoms build a complex three-dimensional [Ni8In4] polyanion in which the calcium atoms fill distorted hexagonal channels. To a first approximation the formula may be written as (3 Ca2+)6+ [Ni8In4]6−. Within the polyanion the Ni1, Ni3, and Ni4 atoms form one-dimensional cluster units which extend in the c direction while the Ni2 atoms have only indium neighbors in a distorted tetrahedral coordination. The Ni–Ni distances in the cluster range from 241 to 266 pm. The cluster units are surrounded and interconnected by indium atoms. The group– subgroup relation from centrosymmetric BaLi4 to noncentrosymmetric Ca3Ni8In4 is presented. Chemical bonding in Ca3Ni8In4 and the structural relation with Lu3Co7.77Sn4, Ca3Au6.61Ga4.39, and Co2Al5 is briefly discussed.  相似文献   

10.
Ab initio calculations were used in a detailed study of chemical bonding and electronic structure of the recently discovered superconducting tetragonal phase Ca10(Pt4As8)(Fe2As2)5 (TC 25 K). The Ca10(Pt4As8)(Fe2As2)5 phase is metal-like, mainly due to the Fe3d states of the (Fe2As2)5 blocks. The electronic spectrum of the (Pt4As8) blocks is similar to a semi-metal with very low density of states at the Fermi level. Chemical bonding in Ca10(Pt4As8)(Fe2As2)5 may be described as a mixture of anisotropic contributions of covalent, ionic, and metallic interatomic and inter-block interactions.  相似文献   

11.
A pure hydrated potassium borate K2B5O8(OH)·2H2O has been synthesized under mild hydrothermal conditions and characterized by single-crystal X-ray diffraction, XRD, FT-IR, Raman spectra and DTA-TG. The crystal structure consists of two K-O polyhedra and [B5O8(OH)]2− polyborate anion. The enthalpy of formation was determined to be −4772.6 ± 4.0 kJ mol−1 by solution calorimetry.  相似文献   

12.
The crystal structure of K2Cu3(As2O6)2 was determined from single-crystal X-ray data by a direct method strategy and Fourier summations [a = 10.359(4) Å, B = 5.388(2)Å, C = 11.234(4) Å, β = 110.48(2)°; space group C2/m; Z = 2; Rw = 0.025 for 1199 reflections up to sin /λ = 0.81 Å−1]. In detail, the structure consists of As(V)O4 tetrahedra and As(III)O3 pyramids linked by a common O corner atom to [As(V)As(III)O6]4− groups with symmetry m. The bridging bonds As(V)---O [1.749(3) Å] and As(III)---O [1.838(2) Å] are definitely longer than the other As(V)---O bonds [mean 1.669 Å] and As(III)---O bonds [1.764(2) Å, 2×]. The angle As(V)---O---As(III) is 123.0(1)°. The Cu atoms are [4 + 2]- and [4 + 1]-, and the K atom is [9]-coordinated to oxygen atoms. The As2O6 groups and the Cu coordination polyhedra are linked to sheets parallel to (001). These sheets are connected by the K atoms. Single crystals of K2Cu3(As2O6)2 suitable for X-ray work were synthesized under hydrothermal conditions.  相似文献   

13.
Well crystallized samples of Dy2Pt7In16 and Tb6Pt12In23 were synthesized by an indium flux technique. Arc-melted precursor alloys with the starting compositions ∼DyPt3In6 and ∼TbPtIn4 were annealed with a slight excess of indium at 1200 K followed by slow cooling (5 K/h) to 870 K. Both indides were investigated by X-ray diffraction on powders and single crystals: Cmmm, a=1211.1(2), b=1997.8(3), c=439.50(6) pm, wR2=0.0518, 1138 F2 values, 45 variable parameters for Dy2Pt7In16 and C2/ma=2834.6(4), b=440.05(7), c=1477.1(3) pm, β=112.37(1)°, wR2=0.0753, 2543 F2 values, 126 variable parameters for Tb6Pt12In23. The platinum atoms in the terbium compound have a distorted trigonal prismatic coordination. In Dy2Pt7In16, trigonal and square prismatic coordination occur. The shortest interatomic distances are observed for Pt-In followed by In-In contacts. Considering these strong interactions, both structures can be described by complex three-dimensional [Pt7In16] and [Pt12In23] networks. The networks leave distorted pentagonal channels in Dy2Pt7In16, while pentagonal and hexagonal channels occur in Tb6Pt12In23. The crystal chemistry and chemical bonding of the two indides are briefly discussed.  相似文献   

14.
The luminescence associated with the Eu3+ ion in K2EuCl5 has been studied at cryogenic temperatures under conditions of high resolution. Emission was observed to originate from both the 5D0 and 5D1 excited states, and transitions to the 7F0, 7F1, 7F2, 7F3, and 7F4 ground levels were observed. The fine structure observed within these emission bands was found to be consistent with the existence of an effective C4 site symmetry for the emitting Eu(III) species, even though the crystal structure does not indicate the presence of a true or pseudo C4 axis.  相似文献   

15.
The chemical preparation and crystal structure of the trivalent silver salt K5Ag(IO5OH)2 · 8H2O are described (monoclinic, space group Cc; a = 21.79(4), b = 6.320(3), c = 15.16(3) Å, β = 96.14(4); four formula units per unit cell). The structure is refined until R = 0.033 for 2718 reflections. Isolated Ag(IO5OH)5?2 units occur, which contain trivalent silver ions surrounded by four oxygen atoms from two IO6 octahedra in rectangular configuration. The differences in the IO bond lengths, as well as the small deviations of the crystal structure from centrosymmetry, are in agreement with an antiperiplanar position of the OH groups in both octahedra.  相似文献   

16.
Single crystals of the quaternary compound Ba8Cu3In4N5 were prepared by heating Ba, Cu, and In in a Na flux at 1023 K under 7 MPa of N2, and by slow cooling from this temperature. The crystal structure was analyzed by single-crystal X-ray diffraction. It crystallizes in an orthorhombic cell (space group Immm (No. 71), Z=2) with a=4.0781(6), b=12.588(2), and c=19.804(3) Å at 298 K. The structural formula is expressed as Ba8[CuN2]2 [CuN]In4. Nitridocuprates of one-dimensional chains 1[CuN2/2] and isolated units 0[CuN2], and one-dimensional indium clusters 1[In2In4/2] are contained in the structure. A split-site model applied for the arrangement of 1[CuN2/2] chains suggested that there is a short-bond, long-bond alternation of the Cu-N bondings. The electrical resistivity of Ba8Cu3In4N5 was 3.44 mΩ·cm at 298 K. A metallic temperature dependence of the resistivity was observed down to 10 K.  相似文献   

17.
New cluster compounds — rhenium and potassium thiohalides K3Re6S7Br7 (I) and K4Re6S8Cl6 (II) — have been synthesized. Their crystal structures have been determined by single crystal X-ray diffraction. The compounds are monoclinic; (I): space group P21/c, a = 9.32(1) Å, b = 13.528 Å, c = 12.413 Å, β = 110.21°, Z = 2, R = 0.038; (II): space group C2/m, a = 10.614 Å, b = 17.268 Å, c = 10.448 Å, β = 110.755°, Z = 2, R = 0.042. In both structures, the potassium ions are considerably distorted. The occupancies of the potassium sites are 0.17-0.34 (I) and 0. 01-0.26 (II), correlating well with the coordination numbers (c.n. 7-10 and 2-7 for I and II, respectively). In I, adjacent positions of potassium atoms are aggregated into discrete tetrahedral and angular clusters; in II, the individual (four-and six-membered) cyclic clusters of potassium sites are present along with bent chains of vertex-and edge-sharing tetrahedral “potassium clusters.” The shortest K-K distances in these “clusters” vary from 1.31 Å to 1.54 Å (I) and from 0.66 Å to 1.65 Å (II). The “instability” of the potassium site suggests that I and II are ion conductors.Original Russian Text Copyright © 2004 by S. F. Solodovnikov, S. S. Yarovoi, Yu. V. Mironov, A. V. Virovets, and V. E. Fedorov__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 909–917, September–October, 2004.  相似文献   

18.
The structural features of Ba2In2O5 at high temperatures are discussed based on a thorough study of the full energy hypersurface of a 36 atoms supercell by periodic density functional theory. The results obtained for this cell are furthermore used for considering stacking-sequences and connectivity-patterns present only in larger supercells. The distribution of oxygen vacancies is far from random and relatively few configurations, associated with different arrangements of tetrahedral InO4, square pyramidal InO5 and octahedral InO6 entities, are thermally accessible at most temperatures. Our results call into the question of commonly used defect models for such grossly disordered materials in which oxygen vacancies are distributed at random over a number of lattice sites. The energetic preference for certain structural entities also has important implications for ionic transport due to restraints imposed by local symmetry.  相似文献   

19.
Interactions in the ternary system K2MoO4-Lu2(MoO4)3-Hf(MoO4)2 have been studied by X-ray powder diffraction and differential thermal analysis. A new triple (potassium lutetium hafnium) molybdate with the 5: 1: 2 stoichiometry has been found. Single crystals of this molybdate have been grown. Its X-ray diffraction structure has been refined (an X8 APEX automated diffractometer, MoK α radiation, 1960 F(hkl), R = 0.0166). The trigonal unit cell has the following parameters: a = 10.6536(1) ?, c = 37.8434(8) ?, V = 3719.75(9) ?, Z = 6, space group R c. The mixed 3D framework of the structure is built of Mo tetrahedra sharing corners with two independent (Lu,Hf)O6 octahedra. Two sorts of potassium atoms occupy large framework voids. Original Russian Text ? E.Yu. Romanova, B.G. Bazarov, R.F. Klevtsova, L.A. Glinskaya, Yu.L. Tushinova, K.N. Fedorov, Zh.G. Bazarova, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 5, pp. 815–818.  相似文献   

20.
Compounds A3+Te6+M33+X25+O14 (A = Na, K; M = Ga, Al, Fe; X = P, As, V) with the Ca3Ga2Ge4O14 structure (sp. gr. P321) were prepared by solid-phase synthesis at 600–850°C in air. The compounds melt incongruently or decompose in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号