首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents a semi‐analytical investigation of a fluid–structure system. Both isotropic and composite cylindrical shells filled with or subjected to a flowing fluid have been considered in this study. The structure may be uniform or non‐uniform in the circumferential direction. The hybrid finite element approach, shearable shell theory and velocity potential flow theory have been combined to establish the dynamic equations of the coupled system. The set of matrices describing their relative contributions to equilibrium is determined by exact analytical integration of the equilibrium equations. The linear potential flow theory is applied to describe the fluid effects that lead to the inertial, centrifugal and Coriolis forces. The axisymmetric, beam‐like and shell modes of vibrations in both cases of uniform and non‐uniform cylindrical shells are investigated. Fluid elastic stability of a structure subjected to a flowing fluid is also studied. This theory yields the high and the low eigenvalues and eigenmodes with comparably high accuracy. Reasonable agreement is found with other theories and experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The non-linear free and forced vibrations of simply supported thin circular cylindrical shells are investigated using Lagrange's equations and an improved transverse displacement expansion. The purpose of this approach was to provide engineers and designers with an easy method for determining the shell non-linear mode shapes, with their corresponding amplitude dependent non-linear frequencies. The Donnell non-linear shell theory has been used and the flexural deformations at large vibration amplitudes have been taken into account. The transverse displacement expansion has been made using two terms including both the driven and the axisymmetric modes, and satisfying the simply supported boundary conditions. The non-linear dynamic variational problem obtained by applying Lagrange's equations was then transformed into a static case by adopting the harmonic balance method. Minimisation of the energy functional with respect to the basic function contribution coefficients has led to a simple non-linear multi-modal equation, the solution of which gives in the case of a single mode assumption an expression for the non-linear frequencies which is much simpler than that derived from the non-linear partial differential equation obtained previously by several authors. Quantitative results based on the present approach have been computed and compared with experimental data. The good agreement found was very satisfactory, in comparison with previous old and recent theoretical approaches, based on sophisticated numerical methods, such as the finite element method (FEM), the method of normal forms (MNF), and analytical methods, such as the perturbation method.  相似文献   

3.
Lee  Y. Y.  Ng  C. F.  Guo  Xinyun 《Nonlinear dynamics》2003,31(3):327-345
This paper investigates large amplitude multi-mode free vibration andrandom response of thin cylindrical panels of rectangular planform usinga finite element modal formulation. A thin laminated composite doublycurved element is developed. The system equation in structural nodal DOFis transformed into the modal coordinates by the using the modes of theunderlying linear system. The nonlinear stiffness matrices are alsotransformed into nonlinear modal stiffness matrices. Numericalintegration is employed to determine free vibration and random response.Single-mode free vibration results are compared with existing classicalanalytical solutions to validate the nonlinear modal formulation.Nonlinear random analysis results for cylindrical panels have shown thatthe root mean square of panel deflections could be larger than thoseobtained using the linear structure theory. Time histories, probabilitydistribution functions, power spectral densities, and phase plane plotsare also presented.  相似文献   

4.
对具环向贯穿脱层的轴对称层合圆柱壳进行振动模态分析.首先,采用Heaviside阶梯函数,构造了一种适合于脱层壳的位移模式.通过对脱层壳的能量分析,应用瑞利--里兹法后,得到用时间函数表示的系统振动控制方程,然后对其求解,得到脱层壳模态分析的特征方程式.算例中,讨论了不同的脱层位置、脱层大小和脱层深度对脱层壳振动模态的影响.  相似文献   

5.
IntroductionCompositestructuresconsistingofshellsofrevolutionhavewideapplicationsinvariousengineeringfieldssuchasaerospace ,chemical,civil,mechanical,marineengineering .Duetothemathematicalcomplexityofshellequationsandthedifficultytomatchconditionsofthe…  相似文献   

6.
Steady-state free vibrations, with large amplitude displacements, of variable stiffness composite laminated plates (VSCL) are analysed. The intentions of this research are: (1)?to find out how the natural frequencies and (mode) shapes evolve with the displacement amplitude in this new type of laminated composite material; (2)?to describe modal interactions in VSCL due to energy interchanges under the coupling induced by non-linearity; (3)?to compare the VSCL with traditional, constant stiffness, laminated plates. The VSCL of interest here have curvilinear fibres and the numerical analysis carried out is based on a recently developed p-version finite element with hierarchic basis functions. The element follows first-order shear deformation theory and considers Von Kármán??s non-linear terms. The time domain equations of motion are first reduced using the linear modes of vibration and then transformed to the frequency domain via the harmonic balance method. These frequency domain equations are solved by an arc-length continuation method.  相似文献   

7.
This paper discusses the derivation of discrete low-dimensional models for the non-linear vibration analysis of thin shells. In order to understand the peculiarities inherent to this class of structural problems, the non-linear vibrations and dynamic stability of a circular cylindrical shell subjected to dynamic axial loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly non-linear behavior under both static and dynamic axial loads. Geometric non-linearities due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the non-linear vibration modes and the discretized equations of motion are obtained by the Galerkin method. The responses of several low-dimensional models are compared. These are used to study the influence of the modelling on the convergence of critical loads, bifurcation diagrams, attractors and large amplitude responses of the shell. It is shown that rather low-dimensional and properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

8.
多层粘合圆筒型壳   总被引:1,自引:0,他引:1  
本文对由若干个各向异性单层粘合而成的多层圆筒壳体,提出一种解析方法,是用各单层顶面和底面的位移作基本未知量,并从各单层的平衡方程及层间的应力平衡条件中事先消去层间应力,从而建立全部壳体平衡型控制微分方程。  相似文献   

9.
Solutions of contact mixed boundary-value problems for a plate and for a cylindrical shell are given. These solutions are obtained with the use of equations for shells constructed by expanding solutions of elasticity theory equations with respect to the Legendre polynomials. Results of numerical simulations of the stress state in the vicinity of points with changing conditions on the frontal faces of the shell are presented. The results obtained are compared with analytical solutions of elasticity theory problems and with solutions obtained on the basis of the classical equations of the shell theory. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 169–176, September–October, 2008.  相似文献   

10.
王宇  谷月  李昌  韩清鹏 《力学与实践》2015,37(3):344-349
基于薄壳理论和黏弹性理论, 得出了黏弹性层合悬臂薄壁圆柱壳模态特性的半解析解. 根据乐甫薄壳理论, 建立了基层和黏弹性阻尼层薄壁圆柱壳的一阶状态微分方程, 结合黏弹性阻尼层的变形协调关系和层间作用力关系, 利用传递矩阵法得出了整体结构的传递矩阵, 采用高精度的精细积分法得出了固有频率、模态损耗因子和三维模态振型, 最后通过有限元法进行了比较, 通过算例验证了传递矩阵法对黏弹性层合薄壁圆柱壳模态特性研究的有效性.  相似文献   

11.
Dogan  V.  Vaicaitis  R. 《Nonlinear dynamics》1999,20(1):33-53
An analytical study of nonlinear flexural vibrations of cylindrical shells to random excitation is presented. Donnell's thin-shell theory is used to develop the governing equations of motion. Thermal effects for a uniform temperature rise through the shell thickness are included in the formulation. A Monte Carlo simulation technique of stationary random processes, multi-mode Galerkin-like approach and numerical integration procedures are used to develop nonlinear response solutions of simply-supported cylindrical shells. Numerical results include time domain response histories, root-mean-square values and histograms of probability density. Comparison of Monte Carlo results is made to those obtained by statistical linearization and the Fokker–Planck equation.  相似文献   

12.
The aim of this paper is to study the dynamic behaviour of functionally graded parabolic and circular panels and shells of revolution. The First-order Shear Deformation Theory (FSDT) is used to study these moderately thick structural elements. The treatment is developed within the theory of linear elasticity, when the materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal that are graded through the thickness, from one surface of the shell to the other. Two different power-law distributions are considered for the ceramic volume fraction. For the first power-law distribution, the bottom surface of the structure is ceramic rich, whereas the top surface is metal rich and on the contrary for the second one. The governing equations of motion are expressed as functions of five kinematic parameters, by using the constitutive and kinematic relationships. The solution is given in terms of generalized displacement components of the points lying on the middle surface of the shell. The discretization of the system equations by means of the Generalized Differential Quadrature (GDQ) method leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. Numerical results concerning eight types of shell structures illustrate the influence of the power-law exponent and of the power-law distribution choice on the mechanical behaviour of parabolic and circular shell structures. Preliminary results were presented by the authors at the XVIII° National Conference of Italian Association of Theoretical and Applied Mechanics (AIMETA 2007) (Tornabene and Viola 27).  相似文献   

13.
Geometrically non-linear forced vibrations of a shallow circular cylindrical panel with a complex shape, clamped at the edges and subjected to a radial harmonic excitation in the spectral neighborhood of the fundamental mode, are investigated. Both Donnell and the Sanders–Koiter non-linear shell theories retaining in-plane inertia are used to calculate the elastic strain energy. The discrete model of the non-linear vibrations is build using the meshfree technique based on classic approximate functions and the R-function theory, which allows for constructing the sequences of admissible functions that satisfy given boundary conditions in domains with complex geometries; Chebyshev orthogonal polynomials are used to expand shell displacements. A two-step approach is implemented in order to solve the problem: first a linear analysis is conducted to identify natural frequencies and corresponding natural modes to be used in the second step as a basis for expanding the non-linear displacements. Lagrange approach is applied to obtain a system of ordinary differential equations on both steps. Different multimodal expansions, having from 15 up to 35 generalized coordinates associated with natural modes, are used to study the convergence of the solution. The pseudo-arclength continuation method and bifurcation analysis are applied to study non-linear equations of motion. Numerical responses are obtained in the spectral neighborhood of the lowest natural frequency; results are compared to those available in the literature. Internal resonances are also detected and discussed.  相似文献   

14.
A linear analysis of the vibratory behaviour of initially tensioned orthotropic circular cylindrical shells conveying a compressible inviscid fluid is presented. The model is based on the three-dimensional nonlinear theory of elasticity and the Eulerian equations. A nonlinear strain–displacement relationship is employed to derive the geometric stiffness matrix due to initial stresses and hydrostatic pressures. Frequency-dependent fluid mass, damping and stiffness matrices associated with inertia, Coriolis and centrifugal forces, respectively, are derived through the fluid–structure coupling condition. The resulting equation governing the vibration of fluid-conveying shells is solved by the finite element method. The free vibration of initially tensioned orthotropic cylindrical shells conveying fluid is investigated; numerical examples are given and discussed.  相似文献   

15.
Using Donnell non-linear shallow shell equations in terms of the displacements and the potential flow theory, this work presents a qualitatively accurate low dimensional model to study the non-linear dynamic behavior and stability of a fluid-filled cylindrical shell under lateral pressure and axial loading. First, the reduced order model is derived taking into account the influence of the driven and companion modes. For this, a modal solution is obtained by a perturbation technique which satisfies exactly the in-plane equilibrium equations and all boundary, continuity, and symmetry conditions. Finally, the equation of motion in the transversal direction is discretized by the Galerkin method. The importance of each mode in the proposed modal expansion is studied using the proper orthogonal decomposition. The quality of the proposed model is corroborated by studying the convergence of frequency–amplitude relations, resonance curves, bifurcation diagrams, and time responses. The parametric analysis clarifies the influence of the lateral and axial loads on the non-linear vibrations and stability of the liquid-filled shell. Finally, the global response of the system is investigated in order to quantify the degree of safety of the shell in the presence of external perturbations through the use of bifurcation diagrams and basins of attraction. This allows one to evaluate the safety and dynamic integrity of the cylindrical shell in a dynamic environment.  相似文献   

16.
The extensive use of circular cylindrical shells in modern industrial applications has made their analysis an important research area in applied mechanics. In spite of a large number of papers on cylindrical shells, just a small number of these works is related to the analysis of orthotropic shells. However several modern and natural materials display orthotropic properties and also densely stiffened cylindrical shells can be treated as equivalent uniform orthotropic shells. In this work, the influence of both material properties and geometry on the non-linear vibrations and dynamic instability of an empty simply supported orthotropic circular cylindrical shell subjected to lateral time-dependent load is studied. Donnell׳s non-linear shallow shell theory is used to model the shell and a modal solution with six degrees of freedom is used to describe the lateral displacements of the shell. The Galerkin method is applied to derive the set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge–Kutta method. The obtained results show that the material properties and geometric relations have a significant influence on the instability loads and resonance curves of the orthotropic shell.  相似文献   

17.
Li  Chaofeng  Li  Peiyong  Zhong  Bingfu  Wen  Bangchun 《Nonlinear dynamics》2019,95(3):1903-1921

The geometrically nonlinear forced vibration response of non-continuous elastic-supported laminated composite thin cylindrical shells is investigated in this paper. Two kinds of non-continuous elastic supports are simulated by using artificial springs, which are point and arc constraints, respectively. By using a set of Chebyshev polynomials as the admissible displacement function, the nonlinear differential equation of motion of the shell subjected to periodic radial point loading is obtained through the Lagrange equations, in which the geometric nonlinearity is considered by using Donnell’s nonlinear shell theory. Then, these equations are solved by using the numerical method to obtain nonlinear amplitude–frequency response curves. The numerical results illustrate the effects of spring stiffness and constraint range on the nonlinear forced vibration of points-supported and arcs-supported laminated composite cylindrical shells. The results reveal that the geometric nonlinearity of the shell can be changed by adjusting the values of support stiffness and distribution areas of support, and the values of circumferential and radial stiffness have a more significant influence on amplitude–frequency response than the axial and torsional stiffness.

  相似文献   

18.
In this paper we derive non-linear modal equations for thin elastic shells of arbitrary geometry. Geometric non-linearities are accounted for by utilizing the strain-displacement relations of the Sanders-Koiter non-linear shell theory. Arbitrary initial imperfections are accounted for and the shell thickness is free to vary within the limits of thin shell theory. The derivation gives the coefficients of the modal equations as integral expressions over the surface of the shell. The resulting equations are well-suited for practical applications. Weighting factors are introduced to allow for reduction of our results to the Love shell theory and to the Donnell approximation. The equations are specialized for a finite simply supported circular cylinder and numerical results are compared to those previously published in the literature.  相似文献   

19.
Based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis and nonlinear theory of shallow shells, considering the damage effect of the interlaminar interface and using the variation principle, the three-dimensional non-linear equilibrium differential equations of the laminated shallow shells with interfacial damage are derived. Then, considering a simply supported laminated shallow shell with damage and under normal load, an analytical solution is presented by using finite difference method to obtain the interlaminar stresses. Numerical results show, the stiffness of the shell is weakened, greater absolute values of displacements as well as smaller interlaminar stresses are obtained by interfacial damage. When the interfacial damage is further increased, delamination occurs obviously under normal pulling load and pure shear slip occurs under normal pressure load. The portion of the load undertaken by the two sides of the interface is more different. Different mechanical behaviors are shown in both sides of the interface, and the discontinuation of stresses and displacements takes place in the interface.  相似文献   

20.
论文根据工程实例计算的需要,研究了有限长弹性圆柱薄壳在两种非轴对称同步移动载荷作用下的动力响应问题.两种非轴对称同步移动载荷作用是指非轴对称移动的集中载荷,以及同步移动且作用范围随移动位置增加的均布载荷的共同作用.建立了在上述两种不同类型载荷作用下的具有对称形式的动力学微分方程组;分别采用Dirac函数与Heaviside函数表示移动的均布载荷与集中载荷,设定位移函数的基础上,应用Galerkin法及Laplace变换,求得了圆柱薄壳应力与位移动态响应的解析解;通过具体算例,将所得到解析解的计算结果与ANSYS数值解进行了对比分析,验证了解析解的可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号