首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes.  相似文献   

2.
The effect of cardiolipin content on the shape and size of giant palmitoyloleylphosphatidylcholine/cardiolipin vesicles was studied. Unilamellar vesicles were prepared in sugar solution by the method of electroformation, from mixtures containing up to 50% weight ratio of cardiolipin. At room temperature the vesicles containing cardiolipin exhibited abrupt changes in the curvature of the vesicle contour indicating regions of phase separation. The deviations from the spherical shape were larger if vesicles were made from mixtures with a higher content of cardiolipin. Numerous vesicles with soft fluctuating walls were observed. The estimated size of the vesicles containing cardiolipin was found to be smaller than the size of pure palmitoyloleylphosphatidylcholine vesicles.  相似文献   

3.
We had previously developed surface-modified poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for use as a cellular drug delivery system. The cellular uptake of PLGA-NPs was mediated predominantly by endocytosis, and this uptake was increased by surface modifications with polymers, such as chitosan (CS) and polysorbate 80 (P80). In the present study, we prepared a cell-sized giant unilamellar vesicle (GUV) that mimics a cell membrane to investigate the interaction between cell membranes and NPs. Endocytosis-like uptake of NPs into a GUV was observed when the NPs were modified with nonionic surfactant P80 probably due to change in viscoelasticity and enhanced fusion activity of the membrane induced by P80. In contrast, unmodified NPs and those modified with CS were not internalized into a GUV. These results suggest that surface properties of PLGA-NPs are an important formulation parameter for their interaction with lipid membranes.  相似文献   

4.
Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore.  相似文献   

5.
The production of giant lipid vesicles with controlled size and structure will be an important technology in the design of quantitative biological assays in cell-mimetic microcompartments. For establishing size control of giant vesicles, we investigated the vesicle formation process, in which inverted emulsion droplets are transformed into giant unilamellar vesicles (GUVs) when they pass through an oil/water interface. The relationship between the size of the template emulsion and the converted GUVs was studied using inverted emulsion droplets with a narrow size distribution, which were prepared by microfluidics. We successfully found an appropriate centrifugal acceleration condition to obtain GUVs that had a desired size and narrow-enough size distribution with an improved yield so that emulsion droplets can become the template for GUVs.  相似文献   

6.
7.
Dynamic amphiphiles provide access to transmembrane ion transport, differential sensing and cellular uptake. In this report, we introduce dynamic amphiphiles with fluorescent tails. Core-substituted naphthalenediimides (cNDIs) and perylenediimides (cPDIs) are tested. Whereas the latter suffer from poor partitioning, dynamic cNDI amphiphiles are found to be purifiable by RP-HPLC, to partition selectively into liquid-disordered (Ld) microdomains of mixed lipid bilayers and to activate DNA as transporters. Importantly, fluorescence properties, partitioning and activity can be modulated by changes in the structure of mixed amphiphiles. These results confirm the potential of dynamic fluorescent amphiphiles to selectively label extra- and intracellular membrane domains and visualize biological function.  相似文献   

8.
在水相中用谷胱甘肽(Glutathione,GSH)为稳定剂合成了量子产率为61%、发射峰为601.2nm的CdTe-GSH量子点,然后用大豆卵磷脂为膜,通过减压蒸发法合成了粒径在1.5μm左右大小的大单室CdTe量子点脂质体(GUVs-CdTe).GUVs-CdTe对量子点的包封率比其他量子点脂质体显著提高,可达86.3%.由静脉注射到小白鼠体内后,各组织切片的荧光显微照片表明GUVs-CdTe不能通过血脑屏障和气血屏障,主要被网状内皮系统去除,在脾脏和肝脏呈弥漫状分布,这和大单室脂质体静脉注射体内后的代谢完全一致.  相似文献   

9.
Glutathione (GSH) capped CdTe quantum dots (QDs) with photoluminescence quantum yields of 61% and the maximum emitting at 601.2 nm were prepared in water phase. Giant unilamellar CdTe quantum dot vesicles (GUVs-CdTe), with diameters larger than 1.5 μm, were obtained using lower-pressure evaporation techniques with soybean lecithin. Compared with other QD liposomes, the entrapment efficiency of GUVs-CdTe for QDs has been significantly improved to 86.3%. After GUVs-CdTe were injected into mice through the tail vein, the fluorescence microscopy of tissue sections showed that GUVs-CdTe could not pass through the blood-brain barrier and air-blood barrier, which were removed mostly by the reticuloendothelial system and were widely distributed in the spleen and the liver. This behavior is the same as the character of the metabolic pathway of giant unilamellar vesicles by intravenous injections in mice.  相似文献   

10.
In this work, we present preparation and basic applications of lipid-bilayer-enclosed picoliter volumes (microcontainers) of solutions of poly(N-isopropylacrylamide) (PNIPAAm). Giant unilamellar vesicles (GUVs) were prepared from phospholipids using a standard swelling procedure and subsequently surface immobilized. Clear, slightly viscous solutions of PNIPAAm of varying concentration in aqueous buffer were directly pressure-microinjected into the GUVs, using a submicrometer-sized, pointed capillary. The GUV was subjected to changing temperature over a 21-40 degrees C range. The typical phase transition of the polymeric material upon heating and cooling across the lower critical solution temperature was followed using optical microscopy and shown to be reversible over multiple sequential heating/cooling cycles without compromising the integrity of the GUV membrane. Fluorescent, carboxylic acid modified 200 nm latex beads, co-injected with the PNIPAAm solution, were temperature-reversibly immobilized during the phase transition, practically freezing the Brownian motion of the entrapped particles in the volume. Furthermore, a co-injected water soluble fluorescent polysaccharide-dye conjugate was shown not to migrate from the aqueous phase into the hydrophobic polymer part upon heating, whereas the fluorescent beads were completely but reversibly immobilized in the hydrophobic domains of dense polymer agglomerates. The system reported here provides a feasible method for the reversible stabilization and solidification of GUV interior volumes, e.g., as a micrometer-sized model system for controlled drug release.  相似文献   

11.
By mixing a small volume of THF containing guanosine derivative 1 and tetraethylenegrycol dodecyl ether (TEGDE) with water and subsequently removing TEGDE by gel permeation chromatography, micrometer-sized giant unilamellar vesicles (GUV) of 1 were successfully prepared. The vesicle membrane was a 2-D sheet assembly of thickness 2.5 nm, composed of a 2-D inter-guanine hydrogen-bond network. The GUV dispersion showed high stability because of a large negative zeta potential, which allowed repeated sedimentation and redispersion by centrifugation and subsequent gentle agitation. TEGDE-triggered fusion of GUVs took place within 350 ms, which proceeded by fusion of the vesicle membranes in contact. These unique static and dynamic properties of the GUV membrane assembled by the 2-D hydrogen-bond network are discussed.  相似文献   

12.
Monodispersed lipid vesicles have been used as a drug delivery vehicle and a biochemical reactor. To generate monodispersed lipid vesicles in the nano‐ to micrometer size range, an extrusion step should be included in conventional hand‐shaking method of lipid vesicle synthesis. In addition, lipid vesicles as a drug carrier still need to be improved to effectively encapsulate concentrated biomolecules such as cells, proteins, and target drugs. To overcome these limitations, this paper reports a new microfluidic platform for continuous synthesis of small‐sized (~10 μm) giant unilamellar vesicles (GUVs) containing quantum dots (QDs) as a nanosized model drug. To generate GUVs, we introduced an additional cross‐flow to break vesicles into small size. 1,2 ‐ dimyristoyl‐sn‐glycero ‐ 3 ‐ phosphocholine (DMPC) in an octanol–chloroform mixture was used in the construction of self‐assembled membrane. Consequently, we have successfully demonstrated the fabrication of monodispersed GUVs with 7?12 μm diameter containing QDs. The proposed synthesis method of cell‐sized GUVs would be highly desirable for applications such as multipurpose drug encapsulation and delivery.  相似文献   

13.
Direct formation of giant vesicles from synthetic polypeptides   总被引:2,自引:0,他引:2  
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography (SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 microm, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 microm. It is expected to be used in drug and gene delivery.  相似文献   

14.
Membrane fusions of vesicles of biomembranes play various important roles in cells, but their mechanisms are unclear and controversial. In the present study, we found that 30 microM to 1 mM La3+ induced membrane fusion of two giant unilamellar vesicles (GUVs) composed of a mixture of dioleoylphosphatidylcholine (DOPC) and dipalmitoleoylphosphatidylethanolamine (DPOPE). We succeeded in observing a process of this membrane fusion in detail. First, two GUVs became strongly associated, with a partition membrane between them composed of two bilayers, one from each GUV. Then, the partition membrane was suddenly broken at one site on its edge. The area of this breakage site gradually spread, until it was completely separated from the GUV to complete the membrane fusion. Here, we propose a new model (i.e., the partition breakage model) for the mechanism of La3+ -induced membrane fusion of GUVs.  相似文献   

15.
Liquid-ordered phase (lo phase) of lipid membranes has properties that are intermediate between those of liquid-crystalline phase and those of gel phase and has attracted much attention in both biological and biophysical aspects. Rafts in the lo phase in biomembranes play important roles in cell function of mammalian cells such as signal transduction. In this report, we have prepared giant unilamellar vesicles (GUVs) of lipid membranes in the lo phase and investigated their physical properties using phase-contrast microscopy and fluorescence microscopy. GUVs of dipalmitoyl-phosphatidylcholine (DPPC)/cholesterol membranes and also GUVs of sphingomyelin (SM)/cholesterol membranes in the lo phase in water were formed at 20-37 degrees C successfully, when these membranes contained >/=30 mol % cholesterol. The diameters of GUVs of DPPC/cholesterol and SM/cholesterol membranes did not change from 50 to 28 degrees C, supporting that the membranes of these GUVs were in the lo phase. To elucidate the interaction of a substance with a long hydrocarbon chain with the lo phase membrane, we investigated the interaction of low concentrations (less than critical micelle concentration) of lysophosphatidylcholine (lyso-PC) with DPPC/cholesterol GUVs and SM/cholesterol GUVs in the lo phase. We found that lyso-PC induced several shape changes and vesicle fission of these GUVs above their threshold concentrations in water. The analysis of these shape changes indicates that lyso-PC can be partitioned into the external monolayer in the lo phase of the GUV from the aqueous solution. Threshold concentrations of lyso-PC in water to induce the shape changes and vesicle fission increased greatly with a decrease in chain length of lyso-PC. Thermodynamic analysis of this result indicates that shape changes and vesicle fission occur at threshold concentrations of lyso-PC in the membrane. These new findings on GUVs of the lo phase membranes indicate that substances with a long hydrocarbon chain such as lyso-PC can enter into the lo phase membrane and also the raft in the cell membrane. We have also proposed a mechanism for the lyso-PC-induced vesicle fission of GUVs.  相似文献   

16.
We report on the dynamics of a chromophore sequestered within the nonpolar regions of micelles and unilamellar vesicles comprised of decanoic acid/sodium decanoate. We find that there is a measurable difference in the motional dynamics of the chromophore perylene in these two nonpolar media, with the vesicle structure forming a somewhat less viscous environment than the micelle. In all cases, the chromophore reorients as a prolate rotor, implying a local environment with a nominally similar shape for both micelle and vesicle structures. These findings demonstrate that the organization of micelles is measurably different than that of bilayers.  相似文献   

17.
The phase behavior and structure of aggregates in a hydrophobic block copolymer (L121)/double-tailed surfactant (AOT)/water system have been studied by phase study, fluorescence spectrometry, dynamic light scattering, transmission electron microscopy, small angle X-ray scattering (SAXS) and conductivity measurements. An isotropic, one-phase region is found between two biphasic regions containing large vesicles, namely, transparent samples are formed by mixing two turbid solutions. Depending on the AOT/L121 ratio, the isotropic region can be quite stable against temperature. The phase transition between the two regions can be detected by the used techniques, and structural transitions in the aggregates are inferred. The experimental evidence indicates that mixed aggregates are formed at very low concentrations, much lower than the critical micellar concentration of AOT. These micelle-like aggregates contain a mixed hydrophobic core, are small (2-4 nm), and seem to be quasi-spherical, which is an unexpected result since the packing parameters of the single amphiphiles do not favor such small quasi-spherical shapes. This behavior might have interesting implications in the release of substances from vesicles when their structure is disrupted.  相似文献   

18.
Vesicle fissions are very important processes of biomembranes in cells, but their mechanisms are not clear and are controversial. Using the single giant unilamellar vesicle (GUV) method, we recently found that low concentrations (less than the critical micelle concentration (CMC)) of lysophosphatidylcholine (lyso-PC) induced the vesicle fission of GUVs of dipalmitoylphosphatidylcholine/cholesterol(6/4) (DPPC/chol(6/4)) membranes and sphingomyelin/cholesterol membranes (6/4) in the liquid-ordered (lo) phase. In this report, to elucidate its mechanism, we have investigated the effect of low concentrations (much less than their CMC) of other amphiphiles with a single long hydrocarbon chain (i.e., single long chain amphiphiles) on DPPC/chol(6/4) GUVs as well as the effect of the membrane composition on the lyso-PC-induced vesicle fission. We found that low concentrations of single long chain amphiphiles (lyosophosphatidic acid, octylglucoside, and sodium dodecyl sulfate) induced the shape change from a prolate to two spheres connected by a very narrow neck, indicating that the single long chain amphiphiles can be partitioned into the external monolayer in the lo phase of the GUV from the aqueous solution. As the single long chain amphiphile concentrations were increased, all of them induced vesicle fission of DPPC/chol(6/4) GUVs above their threshold concentrations. To elucidate the role of cholesterol in the single long chain amphiphile-induced vesicle fission, we investigated the effect of lyso-PC on GUVs of dioleoyl-PC (DOPC)/chol(6/4) membranes in the Lalpha phase; no vesicle fission occurred, indicating that cholesterol in itself did not play an important role in the vesicle fission. Finally, to elucidate the effect of the inclusion of DOPC in the lo-phase membrane of GUVs on the lyso-PC-induced vesicle fission of the DPPC/chol(6/4) GUV, we investigated the effect of low concentrations of lyso-PC on GUVs of DPPC/DOPC/chol membranes. With an increase in DOPC concentration in the membrane, the threshold concentration of lyso-PC increased. At and above 30 mol % DOPC, no vesicle fission occurred. On the basis of these results, we have proposed a hypothesis of the mechanism of the single long chain amphiphile-induced vesicle fission of a GUV of a lo-phase membrane.  相似文献   

19.
Photoinduced electron transfer (ET) from N,N-dimethylaniline to some coumarin derivatives has been studied in small unilamellar vesicles (SUVs) of the phospholipid, DL-alpha-dimyristoyl-phosphatidylcholine, using steady-state and time-resolved fluorescence quenching, both below and above the phase transition temperature of the vesicles. The primary interest was to examine whether Marcus inversion [H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986)] could be observed for the present ET systems in these organized assemblies. The influence of the topology of SUVs on the photophysical properties of the reactants and consequently on their ET kinetics has also been investigated. Absorption and fluorescence spectral data of the coumarins in SUVs and the variation of their fluorescence decays with temperature indicate that the dyes are localized in the bilayer of the SUVs. Time-resolved area normalized emission spectra analysis, however, reveals that the dyes are distributed in two different microenvironments in the SUVs, which we attribute to the two leaflets of the bilayer, one toward bulk water and the other toward the inner water pool. The microenvironments in the two leaflets are, however, not indicated to be that significantly different. Time-resolved anisotropy decays were biexponential for all the dyes in SUVs, and this has been interpreted in terms of the compound motion model according to which the dye molecules can experience a fast wobbling-in-cone type of motion as well as a slow overall rotating motion of the cone containing the molecule. The expected bimolecular diffusion-controlled rates in SUVs, as estimated by comparing the microviscosities in SUVs (determined from rotational correlation times) and that in acetonitrile solution, are much slower than the observed fluorescence quenching rates, suggesting that reactant diffusion (translational) does not play any role in the quenching kinetics in the present systems. Accordingly, clear inversions are observed in the correlation of the fluorescence quenching rate constants k(q) with the free energy change, DeltaG(0) of the reactions. However, the coumarin dyes, C152 and C481 (cf. Scheme 1), show unusually high k(q) values and high activation barriers, which is not expected from Marcus ET theory. This unusual behavior is explained on the basis of participation of the twisted intramolecular charge transfer states of these two dyes in the ET kinetics.  相似文献   

20.
The quenching of anthracene fluorescence by indole (IN), 1,2-dimethylindole (DMI), tryptophan (Trp) and indole 3-acetic acid (IAA) in dimiristoylphophatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) lipid bilayers was investigated. The studies were carried out at 25 degrees C in POPC vesicles and below (15 degrees C) and above (35 degrees C) the phase transition temperature (24 degrees C) of DMPC. A very efficient quenching of the anthracene fluorescence by IN and DMI in the lipid membrane is observed in all cases. It is less efficient in the case of Trp and IAA. Stern-Volmer plots are linear for DMI but present a downward curvature for the other quenchers. This was interpreted as an indication of the presence of an inaccessible fraction of anthracene molecules. By a modified Stern-Volmer analysis the fraction accessible to the quenchers and the quenching constant were determined. Partition constants of the quenchers were obtained from the changes in the fluorescence emission of the indole moiety caused by the presence of the phospholipid. Using the partition constants bimolecular quenching rate constants were determined in terms of the local concentration of quencher in the lipid bilayer. These corrected rate constants are lower than those in homogeneous solvents. In the case of DMPC values the gel phase are higher than in the liquid-crystalline phase. In the quenching by IN and DMI a new, red shifted, emission band appears which could be assigned to an exciplex emission. The exciplex band is absent in the quenching by IAA and Trp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号