首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of mild oxidation of natural graphite (NG7) and some other parameters on the reaction between a fully lithiated graphite anode (Li x C6, x=1.0–1.1) and 1 M lithium hexafluoroarsenate in ethylene carbonate and diethyl carbonate electrolyte (1:2, v/v) were studied by differential scanning calorimetry (DSC). It was found that mild oxidation of the graphite suppressed the exothermic reaction of the fully lithiated anode with the electrolyte, most probably as a result of the formation of a more stable and chemically bonded solid electrolyte interphase. Separation and removal of the small graphite particles from the anode mixture suppressed this reaction further. It was also found that the copper current collector, the amount of electrolyte and binder as well as other parameters have a significant influence on the heat evolution as measured by DSC. Received: 11 October 1999 / Accepted: 1 March 2000  相似文献   

2.
The thermal stability of the solid electrolyte interphase (SEI) formed on a graphite anode has been enhanced by adding an anion receptor, tris(pentafluorophenyl)borane (TPFPB), to the electrolyte. The investigated electrolyte was LiBF4 in a 2:1 mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). Two concentrations of TPFPB have been investigated, 0.2 and 0.8 M. Galvanostatic cycling and differential scanning calorimetry (DSC) were used to study the effect of TPFPB on the electrochemical performance and thermal stability of graphite anodes. The best performance is obtained for a graphite anode cycled in an electrolyte with 0.2 M TPFPB: cyclability is improved, and the onset temperature for the first thermally activated reaction is increased by more than 60 °C up to 140–160 °C. X-ray photoelectron spectroscopy (XPS) has been used to examine the composition of the SEI formed in the different electrolytes; the improved performance for the graphite cycled with 0.2 M TPFPB is attributed to a reduced amount of LiF in the SEI.  相似文献   

3.
二氟二草酸硼酸锂对LiFePO4/石墨电池高温性能的影响   总被引:2,自引:0,他引:2  
研究了二氟二草酸硼酸锂(LiODFB)作为锂盐加入到碳酸丙烯酯(PC)+碳酸乙烯酯(EC)+碳酸甲乙酯(EMC)(质量比为1:1:3)混合溶剂中对LiFePO4/石墨电池高温(60 ℃)循环性能的影响. 用线性扫描伏安法(LSV)测试了电解液的电化学窗口. 通过等离子发射光谱(ICP)和能量散射光谱(EDS)对LiFePO4材料高温条件下在不同电解液中的稳定性进行了研究; 并用扫描电镜(SEM)和电化学交流阻抗谱(EIS)分析了石墨负极表面的固体电解液相界面(SEI)膜的热稳定性. 结果表明: 一方面LiODFB基电解液能抑制LiFePO4材料在高温条件下Fe(II)的溶解, 防止溶解的Fe(II)在石墨上还原, 有效地降低电池阻抗; 另一方面, 在LiODFB基电解液中形成的石墨负极表面SEI膜具有更好的热稳定性, 能显著提高LiFePO4/石墨电池的高温循环性能.  相似文献   

4.
The self-exothermic in early stage of thermal runaway (TR) is blasting-fuse for Li-ion battery safety issues. The exothermic reaction between lithiated graphite (LiCx) and electrolyte accounts for onset of this behavior. However, preventing the deleterious reaction still encounters hurdles. Here, we manage to inhibit this reaction by passivating LiCx in real time via targeted repair of SEI. It is shown that 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane (D3F) can be triggered by LiCx to undergo ring-opening polymerization at elevated temperature, so as to targeted repair of fractured SEI. Due to the high thermal stability of polymerized D3F, exothermic reaction between LiCx and electrolyte is inhibited. As a result, the self-exothermic and TR trigger temperatures of pouch cell are increased from 159.6 and 194.2 °C to 300.5 and 329.7 °C. This work opens up a new avenue for designing functional additives to block initial exothermal reaction and inhibit TR in early stage.  相似文献   

5.
The activation characteristics and the effects of current densities on the formation of a separate LiCoO2 and graphite electrode were investigated and the behavior also was compared with that of the full LiCoO2/graphite batteries using various electrochemical techniques. The results showed that the formation current densities obviously influenced the electrochemical impedance spectrum of Li/graphite, LiCoO2/Li, and LiCoO2/graphite cells. The electrolyte was reduced on the surface of graphite anode between 2.5 and 3.6 V to form a preliminary solid electrolyte interphase (SEI) film of anode during the formation of the LiCoO2/graphite batteries. The electrolyte was oxidized from 3.95 V vs Li+/Li on the surface of LiCoO2 to form a SEI film of cathode. A highly conducting SEI film could be formed gradually on the surface of graphite anode, whereas the SEI film of LiCoO2 cathode had high resistance. The LiCoO2 cathode could be activated completely at the first cycle, while the activation of the graphite anode needed several cycles. The columbic efficiency of the first cycle increased, but that of the second decreased with the increase in the formation current of LiCoO2/graphite batteries. The formation current influenced the cycling performance of batteries, especially the high-temperature cycling performance. Therefore, the batteries should be activated with proper current densities to ensure an excellent formation of SEI film on the anode surface.  相似文献   

6.
The approach to remove green house gases by pumping liquefied carbon dioxide several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite, artinite and if the ferric iron is present brugnatellite are possible; thus necessitating a study of the thermal stability of such minerals. The thermal stability of two carbonate bearing minerals dypingite and artinite together with brugnatellite with a hydrotalcite related formulae have been characterised by a combination of thermogravimetry and evolved gas mass spectrometry. Artinite is thermally stable up to 352 °C. Two mass loss steps are observed at 219 and 355 °C. Dypingite decomposes at a similar temperature but over a large number of steps. Brugnatellite shows greater stability with decomposition not occurring until after 577 °C. The thermal decomposition of brugnatellite occurs over a number of mass decomposition steps. It is concluded that pumping liquefied green house gases into magnesium bearing mineral deposits is feasible providing a temperature of 350–355 °C is not exceeded to prevent escape of CO2 towards the surface. In contrast, the water loss occurring at lower temperatures could have a positive effect on the geosequestration of CO2 as it probably causes a decrease in the molar volume of secondary carbonate minerals and consequently an increase in aquifer porosity.  相似文献   

7.
Electrochemical properties of LiNiO2|Li and LiNiO2|graphite cells were analysed in ionic liquid electrolyte [Li+][MePrPyrr+][NTf2-] (based on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulphonyl)imide, [MePrPyrr+][NTf2-]) using impedance spectroscopy and galvanostatic techniques. The ionic liquid is incapable of protective solid electrolyte interface (SEI) formation on metallic lithium or lithiated graphite. However, after addition of VC, the protective coating is formed, facilitating a proper work of the Li-ion cell. Scanning electron microscopy images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. The charging/discharging capacity of the LiNiO2 cathode is between 195 and 170 mAh g−1, depending on the rate. The charging/discharging efficiency of the graphite anode drops after 50 cycles from an initial value of ca. 360 mAh g−1 to stabilise at 340 mAh g−1. The replacement of a classical electrolyte in molecular liquids (cyclic carbonates) with an electrolyte based on the MePrPyrrNTf2 ionic liquid highly increases in the cathode/electrolyte non-flammability.  相似文献   

8.
This article critically evaluates the characteristics of a new in situ spectroelectrochemical cell with an optimized path of the IR beam, designed in our laboratory for study of the solid electrolyte interphase (SEI) layer formed between a porous graphite anode and alkyl carbonate solution for lithium-ion batteries. The cell was designed in view of the optical principles underlying the way the in situ cell works, to give depth of penetration of the evanescent IR beam through the attenuated total internal reflectance crystal into the electrolyte at such a small value, ranging from 0.277 to 2.77 μm, that it was possible to minimize the "masking effect" of the ethylene carbonate/diethyl carbonate solvent. Moreover, the "local compositional change" which may arise significantly from the "thin layer electrolyte configuration" cell also could be fairly avoided, since only the electrolyte in the vicinity of the electrode composed of graphite particles is reduced to form the SEI layer to a thickness of at most 0.1 μm during the application of potentials. Thus, it was possible to measure the in situ FT-IR spectra in the cell, which represents the real chemical composition and structure of the SEI layer. Taking the application of the designed in situ cell as an example, this article reports the effect of salt type and electrolyte temperature on the chemical composition and structure of the SEI layer between graphite particles and alkyl carbonate solution with the help of various measured in situ FT-IR spectra. Electronic Publication  相似文献   

9.
The composition of the solid electrolyte interphase (SEI) on graphite anodes is characterized within a comparative surface analytical study varying systematically the electrolyte composition and the cycling conditions. In particular, the conducting salts lithium hexafluorophosphate and lithium bis(trifluoromethanesulfonyl)imide as well as vinylene carbonate and 1‐fluoroethylene carbonate as different electrolyte additives are compared regarding the SEI formation under different cycling conditions. A comprehensive study using X‐ray photoelectron spectroscopy revealed pronounced differences of the SEI compositions at different aging stages. Both additives significantly influence the SEI composition and are able to prevent from parasitic side reactions as well as from decomposition of the conducting salt lithium hexafluorophosphate. This study suggests a promising approach to improve the SEI properties to enhance long‐term stability of lithium‐ion batteries by changing the electrolyte composition. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We investigated the interfacial electrochemical processes on graphite anode of lithium ion battery by using highly oriented pyrolytic graphite(HOPG)as a model system.In situ electrochemical atomic force microscopy experiments were performed in 1M lithium bis(trifluoromethanesulfonyl)imide/ethylene carbonate/diethyl carbonate to reveal the formation process of solid electrolyte interphase(SEI)on HOPG basal plane during potential variation.At 1.45 V,the initial deposition of SEI began at the defects of HOPG surface.After that,direct solvent decomposition took place at about 1.3 V,and the whole surface was covered with SEI.The thickness of SEI was 10.4±0.2 nm after one cycle,and increased to 13.8±0.2 nm in the second cycle,which is due to the insufficient electron blocking ability of the surface film.The Young’s modulus of SEI was measured by a peak force quantitative nanomechanical mapping(QNM).The Young’s modulus of SEI is inhomogeneous.The statistic value is 45±22 MPa,which is in agreement with the organic property of SEI on basal plane of HOPG.  相似文献   

11.
Graphite anodes are prone to dangerous Li plating during fast charging, but the difficulty to identify the rate-limiting step has made a challenging to eliminate Li plating thoroughly. Thus, the inherent thinking on inhibiting Li plating needs to be compromised. Herein, an elastic solid electrolyte interphase (SEI) with uniform Li-ion flux is constructed on graphite anode by introducing a triglyme (G3)-LiNO3 synergistic additive (GLN) to commercial carbonate electrolyte, for realizing a dendrite-free and highly-reversible Li plating under high rates. The cross-linked oligomeric ether and Li3N particles derived from the GLN greatly improve the stability of the SEI before and after Li plating and facilitate the uniform Li deposition. When 51 % of lithiation capacity is contributed from Li plating, the graphite anode in the electrolyte with 5 vol.% GLN achieved an average 99.6 % Li plating reversibility over 100 cycles. In addition, the 1.2-Ah LiFePO4 | graphite pouch cell with GLN-added electrolyte stably operated over 150 cycles at 3 C, firmly demonstrating the promise of GLN in commercial Li-ion batteries for fast-charging applications.  相似文献   

12.
Although a lithium metal anode has a high energy density compared with a carbon insertion anode, the poor rechargeability prevents the practical use of anode materials. A lithium electrode coated with Li2CO3 was prepared as a negative electrode to enhance cycleability through the control of the solid electrolyte interface (SEI) layer formation in Li secondary batteries. The electrochemical characteristics of the SEI layer were examined using chronopotentiometry (CP) and impedance spectroscopy. The Li2CO3-SEI layer prevents electrolyte decomposition reaction and has low interface resistance. In addition, the lithium ion diffusion in the SEI layer of the uncoated and the Li2CO3-coated electrode was evaluated using chronoamperometry (CA).  相似文献   

13.
The thermal behavior of several LiPF6 solutions was studied using a C80 calorimeter. It was found that oxygen might react with the solvents and decrease their thermal stability. The dissolution of LiPF6 influences the thermal behavior remarkably with more heat generation and a lower onset temperature. Furthermore, the exothermic peak of LiPF6 based on an electrolyte containing diethyl carbonate (DEC) was found around 185 C, which is 9.5–13.6 C lower than that containing dimethyl carbonate (DMC), which may be due to the relative activity of C2H5— and CH3— in DEC and DMC, respectively.  相似文献   

14.
In overcoming the Li+ desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li3PO4-rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li+ transport, reversible Li+ (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of −20 °C.  相似文献   

15.
A novel BaCe0.4Zr0.3 Sn0.1Y0.2O3−δ (BSY) electrolyte membrane with thickness of 20 μm was fabricated on NiO-based anode substrate via a one-step all-solid-state method followed by a co-sintering at 1450 °C for 5 h. Chemical stability test demonstrated that BSY electrolyte showed adequate chemical stability against CO2 and H2O at intermediate temperature. Besides, the doping of Sn also enhanced the conductivity in humidified hydrogen. With Nd0.7Sr0.3MnO3−σ cathode and hydrogen fuel, the fuel cell generated maximum output of 320, 185 and 105 mW cm−2 at 700, 650 and 600 °C, respectively. The interfacial resistance of the fuel cell was studied under open circuit conditions and the short-term cell performance also confirmed the stability of BSY electrolyte membrane.  相似文献   

16.
Graphite thin film anodes with a high IR reflectivity have been prepared by a spin coating method. Both ex situ and in situ microscope FTIR spectroscopy (MFTIRS) in a reflection configuration were employed to investigate interfacial processes of the graphite thin film anodes in lithium-ion batteries. A solid electrolyte interphase layer (SEI layer) was formed on the cycled graphite thin film anode. Ex situ MFTIRS revealed that the main components of the SEI layer on cycled graphite film anodes in 1 mol L -1 LiPF6 /ethylene carbonate + dimethyl carbonate (1:1) are alkyl lithium carbonates (ROCO2 Li). The desolvation process on graphite anodes during the initial intercalation of lithium ion with graphite was also observed and analyzed by in situ MFTIRS.  相似文献   

17.
We investigate the formation and distribution of the solid electrolyte interface (SEI) layer on a graphite anode with two additives [vinylethylene carbonate (VEC) and vinylene carbonate (VC)] in a formation process using XPS, field emission AES, and extreme high‐resolution SEM (XHR‐SEM) techniques, and we studied what factors play an important role in determining the formation of the SEI layer. The VEC‐derived SEI behaviors (morphology, thickness, compound, and balance over electrode position) on a graphite anode largely depend on the elevated temperature. The VC‐derived SEI layer is mostly formed in the initial charging step, showing simple growth (formation) behavior. It is suggested that the properties of the additives are important for SEI bonding configurations at the nanoscale film surface, and to achieve the stable SEI layer, there appears to be an effective formation process for the additive properties. This research highlights the challenges of developing a stable SEI layer with additives in the formation process for electric vehicle batteries and would make a contribution to the understanding of how formation conditions affect an SEI layer with respect to additive properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Initialization is a critical processing step that has thus far limited the application of the single-chamber solid oxide fuel cell (SC-SOFC). In-situ initialization of a SC-SOFC with a nickel-based anode by methane–air mixtures was investigated. Porous Ru–CeO2 was used as a catalyst layer over a Ni-ScSZ cermet anode. Catalytic testing demonstrated Ru–CeO2 had high activity for methane oxidation. The Ru in the catalyst layer catalyzed the formation of syngas, which successfully reduced the nickel oxide to metallic nickel in the anode. Single cells with a La0.8Sr0.2MnO3 (LSM) cathode, initialized by this in-situ reduction method, delivered peak power densities of 205 and 327 mW cm−2 at 800 °C and 850 °C, respectively. Such performances were better than those of the cell without the Ru–CeO2 catalyst layer that was initialized by an ex-situ reduction method were.  相似文献   

19.
Lithium-ion batteries operate beyond the thermodynamic stability of the aprotic organic electrolyte used and electrolyte decomposition occurs at both electrodes. The electrolyte must therefore be composed in a way that its decomposition products form a film on the electrodes which stops the decomposition reactions but is still permeable to the Li(+) cations which are the charge carriers. At the graphite anode, this film is commonly referred to as a solid electrolyte interphase (SEI). Aprotic organic compounds containing vinylene groups can form an effective SEI on a graphitic anode. As examples, vinyl acetate (VA) and acrylonitrile (AN) have been investigated by in-situ Fourier transform infrared (FTIR) spectroscopy in a specially developed IR cell. The measurements focus on electrolyte decomposition and the mechanism of SEI formation in the presence of VA and AN. We conclude that cathodic reduction of the vinylene groups (i.e., via reduction of the double bond) in the electrolyte additives is the initiating and thus a most important step of the SEI-formation process, even in an electrolyte which contains only a few percent (i.e. electrolyte additive amounts) of the compound. The possibility of electropolymerization of the vinylene monomers in the battery electrolytes used is critically discussed on the basis of the IR data obtained.  相似文献   

20.
A Pb(Zr,Ti)O3 precursor gel made from a sol prepared using 1,1,1,-tris(hydroxymethyl)ethane, lead acetate and zirconium and titanium propoxides, stabilised with acetylacetone, was analysed using TGA–FTIR analysis. Decomposition under nitrogen (N2) gave rise to evolved gas absorbance peaks at 215 °C, 279 °C, 300 °C and 386 °C, but organic vapours continued to be evolved, along with CO2 and CO until 950 °C. The final TGA step in N2 is thought to relate to decomposition of an intermediate carbonate phase and the final elimination of residues of triol or acetylacetonate species which form part of the polymeric gel structure. By contrast, heating in air promoted oxidative pyrolysis of the final organic groups at ≤450 °C. In air, an intermediate carbonate phase was decomposed by heating at 550 °C, allowing Pb(Zr,Ti)O3 to be produced some 400 °C below the equivalent N2 decomposition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号